An XML-based Business Scenario Engine for Networked Enterprises

Takashi NAITO, Keisuke HATA, Shuichiro YAMAMOTO

NTT Information Sharing Platform Laboratories

3-9-11 Midori-cho Musashino-shi, Tokyo 180-8585 Japan

yamamoto.shuichiro@lab.ntt.co.jp

Abstract

We describe a collaborative business scenario description language that is based on XML. This language can be used to describe scenarios for the virtual integration of services over the Internet and intranets. Thus, it enables the business modeling for integrated e-business services to be separated from the software development. This promises to improve the productivity of e-business services, because business managers can easily develop business models using an XML-based scenario without being concerned with application development. The scenario engine executes and controls transactions related to services available from different sites. A preliminary evaluation of the scenario engine has demonstrated its potential usefulness.

Topics of the paper

enterprise modeling, workflow, architecture of software and information systems including collaborative, distributed, Internet, and intranet systems

1. Introduction

Many enterprise applications have recently been developed on the Internet and virtual private networks. There is, however, a need for enterprise application integration (EAI) tools to cut the cost of developing these applications. Current EAI tools have only a simple message transformation mechanism that supports data transfer among the different applications. These EAI tools do not provide cross-enterprise integration, robust application switching for application faults, or flexible application integration with human activities. Although many workflow management tools make it easier to control the execution of a sequence of applications as specified by a business model encoded by the specific workflow design language, integrating enterprise applications at different sites is still difficult. 
To solve these problems, we have developed an XML-based[1] business scenario engine for networked enterprises. The starting point of our approach is as follows.

Enterprise applications are distributed at different sites. These cross-enterprise applications need to be integrated. Human activities are also integrated into business scenarios. If we could integrate and reuse e-services available through networks, the development of e-services would be greatly facilitated; it would be much easier to develop, use, and change services. 

If users who are not familiar with enterprise application development could develop business processes using scenarios, they would find it much easier to specify business models and share scenarios among enterprises. 

We therefore need to develop scenario-based integration technology to better support the integration of enterprise applications. This technology should also enable the network-wide integration of applications and human activities. 

We have developed a scenario-based application invocation mechanism that facilitates the integration of networked applications and user activities. The scenario description language is based on XML because it is flexible, easy to understand, and reusable. 
In Section 2 we explain our scenario-based e-service development approach. In Section 3 we describe the architecture of the scenario engine. This engine will help users develop e-services by describing business scenarios using XML and make it easier to integrate enterprise applications at different sites. Section 4 describes the collaboration-oriented scenario markup language (CSML). In Section 5, we discuss the applicability of the proposed method and the effectiveness of CSML. 

2. Scenario-based e-service development approach

The e-service development approach (Fig. 1) has two steps. The first step is scenario analysis. In the scenario analysis, the XML-based CMSL – a collaborative business-scenario description language – is used to describe and reuse business processes. A scenario consists of a flow of activities that represent applications and human activities. Using a scenario, the user defines the virtual integration of services in terms of a sequence of activities at Internet and intranet sites. During scenario analysis the user is not necessarily concerned with application details such as GUI presentation, the business logic of applications, or database processing. This enables separation between the business process modeling and the application development for integrated e-services. Productivity in developing and launching e-services is thus improved because business managers without any knowledge of application development can easily develop business models using XML-based scenarios. 

The second step is activity development, which includes data integration design and application development. Communication data must be defined for all applications in the same scenario. Each application includes code for the GUI presentation, business logic, database processing, and data integration. 












Traditional e-service development cannot separate the business process from the application coding. Therefore, it is often difficult for the end user to integrate the business processes of applications. In contrast, scenario development by the end user makes it much easier to elicit application integration requirements. Because the scenario engine executes scenarios and controls applications, process integration code is developed in the scenario analysis step and requires no further development. Therefore, the development of e-services is strongly supported by the scenario-based e-service development approach.

3. Architecture of the scenario engine
 The scenario engine consists of the scenario interpreter, the activity directory, the communication data manager, and the scenario manager (Fig. 2). The scenario interpreter is made up of the scenario parser, the scenario context manager, and the scenario executer. The scenario parser loads a scenario from the scenario manager and transforms it into an intermediate form. The instance generated for a scenario is called a scenario instance, and the context of a scenario instance is controlled by the context manager . The scenario executer initiates activities according to the sequence of scenario statements. The activity directory is used to define the physical position of the activities. For example, the directory describes URLs for services on the Internet and e-mail addresses for human activities. The scenario executer asks the directory about the access method for each activity to be executed. After an access method is specified by the directory, the executer initiates the corresponding activity through this method. For human activities, a mail application can be used to send service requests to the persons responsible for the task specified by human activities. Human activities are defined in the directory with the addresses of the person and the mail application. This mechanism increases the flexibility of the integration between human activities and application programs. Since the directory manages the correspondence between activity names in a scenario and the physical definitions of activities, no scenario modification is needed to change the physical positions of applications for the activities.
















The communication data shared among activities are stored with a shared data instance identifier (SDI-id) that distinguishes it from other communication data. Activities of the same scenario instance can easily exchange data through the communication data manager by using an SDI-id and a scenario instance identifier (SCI-id) that specifies the current scenario. Activities include an SDI-id and an SCI-id (an instance identifier pair) when sending communication data to the communication data manager. The receiver activities that use the data can get it from the communication data manager by using the instance identifier pair. The mechanism encapsulates data communication codes from the business process, so an end user can easily construct a business process without any tedious data handling by simply using a scenario.

4. Collaboration-oriented Scenario Markup Language (CSML)

4.1 CSML specification
In CSML, an application that interacts with the operator is called an activity. The scenario defines a processing flow using scenario statements. The scenario definition consists of a scenario header, a declaration part, a body part, and an exception part. The scenario header includes the scenario name and version.

< Scenario Name = “ scenario name ”  [ Ver = “ version number ” ] >

　[ Declaration part ]

　 Body part

　[ Exception part ]

< / Scenario >
The declaration part contains the scenario description and event description. The event description explains the events used in the scenario.

< DeclarationPart  > 

  [ < Description > Scenario description  < / Description > ]

  {< Event Name = “ event name ” >  Event description < / Event >} *

< / DeclarationPart >

The scenario statements describe the body part, which contains five kinds of scenario statements:

(1) Activity statement: Execute an activity.

< Activity  Name = “ activity name ” >

  < Event Name = “ event name ” / > *

< / Activity >
Each activity may have a sequence of events. Only one of the events should occur after the execution of the activity. 

(2) Concatenation statement: Concatenate two or more scenario statements. Scenario statements are executed in sequence without any pause between them. 

< Seq >

   Scenario statements +

< / Seq >
(3) Parallel statements: A parallel AND statement executes two or more processes at the same time, and the system waits until all activities have ended. A parallel OR statement executes two or more processes at the same time, and the system waits until any activity has ended. 

< Par  [ Join = “ AND # | OR ” ]  >

   Scenario statement *

< / Par >
(4) Switch statement: Input events are compared against specified conditions, and processing that matches the conditions is executed.
< Switch >

 { < Case  Event = “ event name ” > 

      Scenario statement +

  < / Case > } +

 { < Other >

      Scenario statement +

  < / Other > } *

< / Switch >
(5) Raise Exception statement: Processing is shifted to the exception part when an exception event occurs. 
< Raise  Event = “ event name ” / >

The exception part describes the exception-handling statement by a scenario statement. If another exception occurs while an exception statement is being executed, the execution is stopped and the second exception is executed. 
< Exception  Event = “ event name ” >

   Scenario statement +

< / Exception >

The end of the exception statement is described by the terminate statement. The default terminate statement is Exit.

<Terminate command =  “ Resume | Exit # | Finish | Abort ” />

The termination of an exception is handled in one of four ways.

· Resume: Returns to body part. Processing restarts. 

· Exit: Returns to the next upper level of the exception statement. At the top level of the exception, processing returns to the body part.

· Finish: Returns to the next upper level of the exception statement. At the top of the exception, processing ends.

· Abort: Ends processing.

4.2 Example CSML scenario

   The following is an example of a CSML scenario for a travel agency. 

<?xml version="1.0" encoding="EUC-JP"?>

< Scenario  Name= "travel">

< DeclarationPart>

 < Event Name = ‘cancel’ > Reservation cancellation < /Event >

< /DeclarationPart>

< BodyPart>
 < Activity Name = ‘Airline reservation’ />

 < Activity Name = ‘Hotel reservation’ />

 < Activity Name = ‘Input personal information’ />
< /BodyPart >
< ExceptionPart >

 < Exception Event = ‘cancel’ >

 < Terminate command = ‘Abort’ />

 < /Exception>

< /ExceptionPart >

< /Scenario>
The hotel and airline reservation applications and the customer administration application operate cooperatively in this scenario. 

5. Discussion 

5.1 Applicability
We have implemented the scenario engine described above using Java and applied it to an e-mall development project. The project included four different enterprises. Each enterprise developed one e-service using the scenario engine through the Internet. The e-services developed were three digital-content retail sites and a content-contribution site. The digital-content retail sites were to sell photographs, music, and foreign-language-learning content. The content-contribution site was to gather digital content from contributors that would be edited by the site's editors. Each e-service reused the same payment service and account management application. The services included 28 scenarios and 97 activities. The mean number of e-service WWW pages was 62. The success of this project demonstrates the applicability of the scenario engine for e-services. 

 The numbers of scenarios differed greatly between sites. For example, the contribution site had 17 scenarios, but the photograph site had only one. This difference was due to the scenario development process. The contribution site's designers developed a flow of WWW pages, then defined scenarios. The photograph site's designers defined one logical scenario, then developed applications for each scenario activity. The approach taken for the contribution site probably increased the number of scenarios because scenarios were extracted from each sequence of WWW pages. This demonstrates the importance of the order of steps taken in the scenario-based e-service development approach described in Section 2. Further experiments to precisely determine the impact of various scenario development methods are needed.

5.2 Effectiveness of CSML

The use of CSML has three positive effects.

(1) Business processes to be reused.

· With existing tools, we must define a business process by describing a mixture of processing flows and service-specific information. This makes it difficult to reuse the business process in other services. CSML describes service-specific information and processing flows separately, so a processing flow can be reused in other services.

· With existing tools, we must define business processes with names representing actual physical objects and locations. Such defined business processes cannot be easily used in other services because the physical names differ from service to service. In a CSML scenario, though, application names are described by logical names that are converted to the corresponding physical names upon execution. CSML thus enables the reuse of scenarios in other services with the corresponding physical information provided upon execution.
(2) Business processes are easy to change.

· With existing tools, we must describe application data in the business process (e.g., ‘if price>‘target value’ then execute P1 else P2’, where the value (e.g., ‘$100’) given for ‘target value’ is application data.). In such cases, the business process and the application are closely related, so changing the business process means the application data must be checked and possibly modified. Thus, the business process cannot be changed quickly or easily. With CSML, the scenario does not include application data. The business process is simply defined by describing the processing flow and the execution conditions for the applications. 

(3) CSML can be widely applied.

· With existing tools, we must describe business processes using the tools’ own notations, but a CSML scenario can be described in the standardized XML notation.
· With existing tools, exception handling cannot be described using programming languages, but can be so described in a CSML scenario.

5.3 Descriptive capabilities of CSML

We compared the description capabilities of CSML to those of Workflow Process Definition Language (WPDL), a similar description language that can also be used to describe a workflow. (WPDL is being developed by the Workflow Management Coalition[2].) The travel agency scenario from above was used for this comparison. We found that:

· CSML, unlike WPDL, can effectively describe exception handling. 
· Physical information is included in WPDL scenarios, but excluded from CSML scenarios. In a typical WPDL scenario, about 30% of the lines of code were used to describe the physical information, and about 70% of the lines were used to describe the same logical information as with CSML. Reusing this WPDL scenario for other travel agencies would be difficult, but CSML can reuse all the logical information lines for other travel agencies. Thus, CSML enables scenario reuse.

 Also, WPDL uses its own notation, but CSML is based on XML and thus has wider applicability.
5.4 Related work

Applications must be able to cooperate and share their information in order to use information effectively for business [2]. Workflow tools [3], GroupWare tools, and EAI tools have been developed to enable application integration and cooperation between existing applications. In some cases, SWAP [4] also enables these tools to cooperate. These tools, however, still have certain limitations.

· The described business processes cannot be reused by other tools, because the form for describing business processes differs from tool to tool.
· A tool is usually unable to cooperate with another tool.
· These tools cannot describe exception handling for the business process.

Hewlett-Packard has developed an e-speak platform that provides a hierarchical e-service architecture including service, solution, component, and core layers [5]. The service layer provides corporate applications over the Internet. The solution layer is a kind of virtual community service and provides brokerage functions for e-services. The component layer provides basic e-service functions, such as identification, billing, customer management, and preference matching. The e-speak core is a Java-based e-service development environment, and consists of a Java-based e-service API and an e-service engine. The e-service engine manages the messaging, mediation, naming, and monitoring functions. The e-speak API is used by the Java applications of the upper e-speak layers. The metadata which stored on the e-speak core is able to search dynamically among e-services. The e-speak core allows brokering through attribute matching between information requesters and providers. But although the e-speak core provides these useful integration functions, Java applications must still be developed to integrate e-service components. The core provides neither scenario-based higher-level scripting language, nor an application data sharing mechanism. 
 Although Gruhn and Wellen proposed a process-oriented approach to develop electronic commerce applications [6], their emphasis was on the formal specification of communication interfaces. Their process model is defined by the tuple of the object type, the object states, a set of activities, and the flows between activities and states. Therefore, it is difficult for end users to describe and understand the business processes of EC applications using their specifications. 

6. Conclusion

We have described a scenario-based e-service development approach, the XML-based CSML, and the scenario engine. We have also discussed a preliminary evaluation of the scenario engine. The main purpose of the scenario description is to separate the business process from the application coding. This enables end users not familiar with application programming to design business logic. As a consequence, it will encourage the evolution of e-services on the Internet.

CSML is a markup language for describing a business process.

· It enables business processes to be reused. 
· It enables applications to cooperate
· It can describe exception handling for the business process.

  Our evaluation of CSML showed that it allows greater reuse and wider applicability than existing tools. We have also described some practical applications of the implemented scenario engine to e-services provided through the Internet, and have explained the importance of the scenario development process. 

Future study should include refinement of the scenario specification language, an evaluation of productivity when using the scenario-based e-service development approach, and an evaluation of the scenario engine's performance. We are also designing a scenario editor that allows the user to drag-and-drop icons from a menu of scenario statements to generate CSML business scenarios. Such a visual-scenario interface will greatly promote e-service development as well as the reuse of existing e-services.

Acknowledgements

We thank Takafumi Saito and the members of the scenario engine development team for their comments on this paper.

References

[1] Extensible Markup Language (XML) 1.0 (W3C Recommendation),

http://www.w3c.org/TR/REC-xml

[2] Yuan LI, Zhiping Fan, and Xuan Zhao, An Integrated Framework of Supply Chain Management System, APSEC99, pp. 196- 199, 1999.

[3] Workflow Management Coalition (WfMC), http://www.aiim.org/wfmc
[4] Gregory Alan Bolcer: SWAP Leveraging the Web To Manage Workflow, IEEE Internet Computing, pp. 85-88, Jan.-Feb. 1999.

[5] e-speak, http://www.e-speak.hp.com/
[6] Volker Gruhn and Ursula Wellen, Software Support for Distributed Business Processes,

APSEC 99, pp. 200- 205, 1999.

Application development





Scenario analysis





E-service requirements








Human 


activities





Application 


programs 





Figure 1. Scenario based e-service development approach





Scenario





Requirements





Figure 2. Architecture of scenario engine





Scenario


Executer





Scenario


Parser





Scenario


Manager





Activity


Directory





Common. Data


Manager





Context


Manager





Appl.





Appl.





Appl.





Scenario engine





SDI-id





SCI-id


SDI-id





SCI-id





Scenario Interpreter








7

