BPSS and Notation

Introduction

This document is a proposal for graphical notation for ebXML business collaboration. The proposal includes at the same time a UML based notation and an extended notation.

A common set of notation is a major requirement for the adoption of ebXML BPSS specification. Indeed, such a specification provides the linkage between business requirements and the enabling technologies. Mostly business people will define collaboration. They will exchange information and viewpoints in terms of diagrams and pictures, not in terms of XML files. At the same time, specifications have to be precise enough to be rendered in a way that runtime engines can understand them to configure themselves.

Consequently, the notation has to be well balanced between these two objectives.

Business Transaction

The problem

A BusinessTransaction is the conjunction of two elements:

1. A specification of document flows between two roles

2. A specification of the context of the interaction in terms of:

a. Time constraints

b. Signals for acknowledgment and non repudiation

c. Possible constraints on Business Document content.

One of the major characteristics of a business transaction is that it results in either a Success or a Failure. This result can only be determined by the combination of both the transaction interaction context and the document flowing between the roles.

A common representation of a BusinessTransaction is an Activity Diagram with two end-states, success and failure, to represent the two possible results of the transaction. The computation of the end-result is usually described in the guard transition between the requesting activity and the end-states. This notation is focused on the computation of the end result of the BusinessTransaction:

Strength: This notation highlights the inherent success or failure of a transaction which is a major characteristic of ebXML and the UMM.

Weakness: The effective end-result computation is determined by information defined outside the transaction itself, like the timeToPerform attribute of transaction activities inside of a Binary Collaboration. Furthermore, the usage of guards for BusinessTransaction is not available in the BPSS specification.

The computation of the end-result is a key point for BusinessTransaction and certainly governs the associated notation. Therefore, the following paragraph attempts to define what the computation model is in order to propose which BusinessTransaction elements should be highlighted in the notation.

The guard conditions are not part of BPSS Transaction specification

[image: image1.wmf][image: image2.wmf][image: image3.wmf]Shipper:RequestingRole

Carrier:RespondingRole

Process Shipment

Instruction

 [ShipmentInstruction.Status=ACCEPTED]

Create Shipment

Instruction

Bill of lading

Shipment

Instruction

[(TransportManifest.Status=INVALID-SHIP-TO) OR

(Message("ShipmentInstruction").Status=NOT-

ACKNOWLEDGED]

The Transaction Computation model

The following diagram describes how a transaction end-result can be computed from the requester perspective, based on the elements available in the BPSS collaboration document and the transaction patterns for signals and acknowledgment:

1. Attributes on requesting and responding activities.

2. Business Documents and ConditionExpressions.

3. isPositive attribute response on Document Envelope

[image: image4.wmf]Send Request

wait for Interaction

confirmation

Yes

No

interactionRuleOK

Yes

No

ResponseDocument

wait for Response

Yes

No

interactionRulesOK

CheckDocument

Yes

Send Ack Signals

No

DocumentOK

Yes

No

IsPositiveResponse

Send Abort Signals

Transaction success

Transaction failure

=

The transaction may just be a

notification.

In that case, no response document is

expected back. The transaction

succeded

=

The final computation of success or

failure is determined by the

isPositiveResponse of the

DocumentEnvelop.

=

Interaction rules:

. time constraints for the ack signal

. non repudiation signals

. time constrains for the transaction

=

The document corresponds to one of

the possible BusinessDocuments

defined in the BPSS contract:

1: It matches the associated schema

(whatever the format)

2. It matches all the

ConditionExpressions associated to the

Business document definition

=

Interaction Rules:

. time constrainst for the transaction

. non repudiation signals

This computation model outlines that today’s BPSS requires the definition of logical document flows to enable the computation of the end-result in case of multiple possible responses. Using guards to express the condition of success or failure is difficult because:

1. Guards do not exist in the current specification of BPSS BusinessTransaction.

2. ConditionExpression on BusinessDocuments cannot be used either. They are conditions defining a match between a physical document and a logical document. Nothing specifies whether they express a success or a failure.

The bad thing of all this is that it may seem difficult to define success or failure without guards. However, the logical flow solution is powerful enough. Furthermore, it helps a lot in the binding of Collaboration definition to internal implementation. It would be difficult to branch into internal business activities if the branching conditions where hidden into the guards.

Transaction example

[image: image5.png]Dealer OEM
[]
RequestingActivity ConfirmBOD Reject
T

< Pusitive=>

ConfirmBOD Accept

[success |

ProcessPQ

<BusinessDocument

 name="ProcessPO"

 specificationLocation="www.mydtd.com/OAGi/ProcessPO.dtd"

/>

<BusinessDocument

 name="ConfirmBOD Accept"

 specificationLocation="www.mydtd.com/OAGi/ConfirmBOD.dtd"

>

 <ConditionExpression expressionLanguage=“Xpath” expression="status=0x99" />

</BusinessDocument>

<BusinessDocument

 name="ConfirmBOD Reject"

 specificationLocation="www.mydtd.com/OAGi/ConfirmBOD.dtd"

>

 <ConditionExpression expressionLanguage=“Xpath” expression="status=0x00" />

</BusinessDocument>

<BusinessTransaction name="PO">

 <RequestingBusinessActivity

 name="Dealer"

 isNonRepudiationRequired="true"

 timeToAcknowledgeReceipt="P2D"

 timeToAcknowledgeAcceptance="P3D"

 >

 <DocumentEnvelope businessDocument="ProcessPO" />

 </RequestingBusinessActivity>

 <RespondingBusinessActivity

 name="OEM"

 isNonRepudiationRequired="true"

 timeToAcknowledgeReceipt="P5D"

 >

 <DocumentEnvelope isPositiveResponse="true" businessDocument="ConfirmBOD Accept" />

 <DocumentEnvelope isPositiveResponse="false" businessDocument="ConfirmBOD Reject"/>

 </RespondingBusinessActivity>

</BusinessTransaction>

Proposed solutions

UML Notation for BusinessTransaction

As outlined in the computation model, the highlight is made on Document flow. End-states can be represented but no guard should be used for the end-result computation. A stereotype is added to differentiate positive response from negative response.

[image: image6.png]Dealer OEM
[]
RequestingActivity ConfirmBOD Reject
T

< Pusitive=>

ConfirmBOD Accept

[success |

ProcessPQ

Extended notation for Transaction

As document flow is now the highlighted element in the notation, the need for a separation between role and activity is no more needed. The extended notation simplifies the diagram by merging roles and activities.

· Activities are represented as boxes

· Request flows are represented with a ‘?’ symbol.

· Positive response flows are represented with a ‘=’ symbol

· Negative response flow are represented with a ‘!=’ symbol

[image: image7.png]{2 PracessPO s

& - ConfimBOD Accept

ConfirBOD Reject

Binary Collaboration

The problem

Binary collaborations contain two modeling aspects:

1. A control flow of transaction activities that specifies the rules for transitions between activities

2. A participation flow that specifies which role is the initiator of each activity.

A first proposal is to have two separate diagrams to represent each of these aspects. The responsibility flow is described in a Sequence Diagram and the control flow in an Activity Diagram. The drawback is that we need to read the two diagrams to have an understanding of the whole collaboration.

	
[image: image8.wmf]

Intermediary

Supplier

add Quote

sync Quote

change Quote

delete Quote

	[image: image9.wmf]getList

RFQ

get

RFQ

add

Quote

Success

review Quote

review RFQ

Business

Failure

[image: image10.wmf]sync

Quote

respond

Quote

cancel

Quote

Business

Failure

change

Quote

Proposed solutions

The main idea is to have a common diagram for both the control flow and the participation flow. The control flow already has a well-defined notation.

UML Notation for Binary Collaboration

Swim lanes are available in Activity Diagram. However, the main purpose of swim lanes is to depict responsibility not participation: each swim lane object is responsible of the activities occurring inside its region.

The solution is to say that the transaction’s activities are owned by the initiating role. Activities are placed in the swim lane of the initiating role. Therefore, ownership of activities determines initiation.

[image: image11.png]ChangeP

0 Dealer ‘ ‘ ChangePO OEM

Extended Notation for Binary Collaboration

The extended notation takes into account that activities are not owned by roles inside a Binary-Collaboration. Therefore, the swim lane notation is not used. The notation shows at the same time the control flow and the participation flows.

[image: image12.png]ealer

1

ChangePO Dealer

ChangePO OEM

OEM

_1056564489.doc

Intermediary

Supplier

add Quote

sync Quote

change Quote

delete Quote

