Executable Trading-Partner Agreements in Electronic
Commerce’

Martin Sachs?, Asit Dan, Thao Nguyen, Robert Kearney, Hidayatullah Shaikh, Daniel Dias

IBM T. J. Watson Research Center
Yorktown Hts, NY 10598

Abstract

In business to business electronic commerce, the terms and conditions describing the electronic
interaction between businesses can be expressed as an electronic contract or trading-partner
agreement (TPA) from which configuration information and code which embodies the terms and
conditions can be generated automatically. This paper first discusses issues related to contracts
and more generally to inter-business electronic interactions. Next, we describe the basic
principles of electronic TPAs. The TPA expresses the rules of interaction between the parties to
the TPA while maintaining complete independence of the internal processes at each party from
the other parties. It represents a long-running conversation that comprises a single unit of
business. Next, we describe our TPA language. We then describe tools for authoring TPAs and
generating code from them. Finally, we describe an example of an application which can benefit
from TPAs.

1. Introduction

Contracts describe legally enforceable terms and conditions in all kinds of interactions between
people and organizations. Examples of interactions are marriage, employment, real estate
purchases, and industrial supply arrangements. In business to business electronic commerce,
there is a need to agree not only on the traditional terms and conditions but also on IT procedures
from communication protocols to business protocols (Dan & Parr 1997a). Today, such contracts,
or trading-partner agreements (TPAS), are generally written in human languages and then turned
into code by programmers.

Business to business electronic commerce will be given considerable impetus by expressing the
IT terms and conditions as electronic TPAs from which the code to perform the terms and
conditions can be automatically generated at each party's business to business server. This will
speed up the reduction of the terms and conditions to code and ensure that the code at each
business partner's site will accurately embody the desired terms and conditions. In the longer
term, electronic TPAs will also facilitate electronic negotiation of terms and conditions, at least
for the simpler situations which need not involve extensive legal negotiation. Electronic
negotiation in turn opens the possibility for spontaneous electronic commerce, i.e. quick and easy
setup of business to business deals on the Internet (Dan et al 1998).

! © Copyright IBM Corporation 2000
2 Contact: mwsachs@us.ibm.com



In recent years, there has been a large amount of activity in modeling and analyzing various
electronic commerce methods using contract or agreement approaches. Dan & Parr 1997b and
Weigand & Ngu 1998 discuss how interoperable transactions in electronic commerce differ from
traditional ACID (atomicity, consistency, isolation, durability) transactions (Gray & Reuter 1993)
and the importance of distinguishing between the contract (communication behavior) and the
task (the meaningful unit of work) and propose a scheme for specifying the contract which is
suitable for analyzing the process.

Many academic publications discuss conceptual contracts as part of their models but the do not
suggest a specific business to business contract language or discuss embodiment of a system
based on such a contract. Dan & Parr 1997a discuss the general principles in business to
business electronic commerce and mention the use of a business to business electronic contract
but provide no details. Dan et al 1998 discuss the specific functions needed in a business to
business electronic contract and describe the architecture of the prototype of a business to
business server built at IBM Research but do not describe a specific contract language.

In this paper, we focus on the language for an electronic TPA and the tools to assist in composing
the TPA and to generate code from it.

The paper is organized as follows. In section 2, we detail the issues that need to be addressed in
business to business interactions. Section 3 discusses the principles of business to business
electronic TPAs. In section 4, we describe our TPA language. In section 5, we describe the tools
for creating TPAs and generating code from them. Finally, in section 6, we describe an
application example which illustrates the use of the TPA.

2. Issues in Inter-Business Electronic Interactions

Increased automation of business processes within a business organization leads naturally to
automation of business to business (B2B) interactions (Dan & Parr 1999). The issues of privacy,
autonomy, heterogeneity in software and platforms, and more importantly, managing complexity
of interactions, however, make this a challenging task. Some of these issues, e.g., heterogeneity
of programming languages and platforms in which the application components are developed,
and stateful interactions across program components, are also addressed in the automation of
business internal processes and integrating application components. Total knowledge and control
in the design of the business process within an organization make this a manageable task.

Component architectures such as CORBA (Corba 1998) and Enterprise Java Beans (Ejb 1999)
provide middleware for integrating application components written in different languages. For
the purpose of interaction, an application component needs to know only the interfaces to other
components written in a suitable middleware integration language (e.g., Interface Definition
Language or IDL in CORBA). In such environments, typically, the applications are executed as
short ACID transactions. The underlying middleware provides necessary runtime services, e.g.,
naming, transaction, resource allocation. A long-duration application is modeled as a sequence
of short independent steps invoked either manually or in an automated manner (Dan & Parr
1999, Wfmc 1998, Garcia-Molina & Salem 1987).

2



Most methodologies reported in the academic literature for automation of internal processes of
individual businesses are not directly applicable for the automation of B2B interactions. First and
foremost, no common shared underlying middleware can be assumed for distributed applications
spanning organizational boundaries. Setting up such a common software bus requires tight
coupling of the business partners' software platforms (e.g., consider the issues on security,
naming, component registration).

Even if such a software bus can be established, ACID and/or complex extended transaction
models of stateful interactions are not appropriate for such B2B interactions. First,
implementation of such protocols necessitates tight coupling of operational states across business
applications, which is highly undesirable. The application components in one organization may
hold locks and resources in other organizations for an extended period of time, resulting in loss
of autonomy. Rollback and/or compensation of application steps is no longer under the control of
a single organization. Finally, in real-world business operations the states always move forward,
and explicit recourse actions are taken by business partners to move to a more desirable
operational state. An example is cancellation of a prior purchase or reservation.

In Dan and Parr 1997b, a conversational model of interactions is proposed where, based on the
conversation history, each partner explicitly specifies the permissible operations. For
management purposes, the internal business process is separated from external interactions.
Each trading partner manages and is responsible for its own internal activities in the B2B
application and may use ACID transactions within its own domain. The model furthermore
structures the external interactions as actions consisting of requests, responses, modifications or
cancellations, groups of actions that together satisfy certain interaction rules, and conversations
demarcating interaction contexts. Interactions in one conversation may trigger actions in other
conversations via execution of internal business logic.

The invocation of application components across organizational boundaries needs to be
controlled and monitored (Dan and Parr 1997a, Dan et al 1998). First, without rigorous testing
and cooperation in software development across organizations, the correct execution of such
complex distributed applications can not be assumed. Second, in such automated interactions,
trust becomes an overarching concern. During runtime, explicit checks are necessary to ensure
that business partners are not violating any policy constraints (e.g., cancellation of a reservation
must be within the allowable time window) .

In the Coyote (Cover Yourself Transaction Environment) project (Dan et al 1998), we address all
of the above issues by setting up a B2B interaction via a composable interaction stack based on
an electronic TPA. The automated process of setting up this interaction from an unambiguous
formal specification and enforcing contractual agreements is termed an executable TPA. The
Coyote server provides additional services for supporting long running applications, e.g.,
application development, asynchronous event driven execution, compensation framework,
maintaining correlation of conversations, logging and querying the activity on a conversation.
However, these are not the focus of the current paper.



3. Principles of Business to Business Electronic TPAs

The purpose of the electronic TPA is to express the IT terms and conditions to which the parties
to the TPA must agree in a form in which configuration information and the interaction rules
which must be executable can be automatically generated from the TPA in each party's system.
It should be understood that the information in the TPA is not a complete description of the
application but only a description of the interactions between the parties. The application must
be designed and programmed in the usual manner. As a simple example, the TPA may define
requests such as "reserve hotel”. The "reserve hotel” function must be designed, coded, and
installed on the hotel server. That function may, in turn, invoke various site-specific functions
and back-end processes whose details are completely invisible to the other party to the TPA.

We emphasize that the TPA is formulated to ensure that each party maintains complete
independence from the other party both as to the details of the implementations and as to the
nature of the business processes and back-end functions (database, transaction monitors, ERP
functions, etc.) used. For example, as previously mentioned, the TPA neither requires, nor
provides the means for, ACID transactions involving both parties.

In this paper, we use the terms "client” and "server™ in the usual way. A client requests services
of a server. However we envision applications in which a given party may play both server and
client roles at different times. In other words, a party may both request services of the other party
and receive service requests from the other party. In the simplest applications, there may be two
parties, one of which is a always a server and the other, always a client. An example is a travel
application involving a travel agency (client) and airline company (server). Even in such a
simple case, however, the parties may exchange roles. For example, the airline company may
issue requests to the travel agency for more information about the traveler or itinerary.

The TPA is represented at each party which acts as a server by an object, called a TPA object or
(or equivalent code for non-object-oriented implementations), which performs rule checking and
translation of the request messages from the form defined in the TPA to the actual method calls
at the parties which act as servers. A similar TPA object, generated at each party which can act
as a client to other party, performs the inverse translation, from local method calls to the request
messages, as defined in the TPA, which are sent to the other party. A party which can act as both
a client and as a server has both kinds of TPA object. Use of the TPA objects is illustrated in the
examples in section 6.

The TPA represents a single long-running conversation, which is a set of related interactions,
dispersed in time, that comprises a single unit of business. For example, in a travel application,
the TPA might define the interactions between the travel agent and a hotel company starting with
making the different reservations needed by the traveler, to the check-in processes during the trip,
and ending when the traveler checks out at the last stop. This sequence of steps is a single
long-running conversation. A unit of business is performed under the TPA by instantiating the
TPA as a long-running conversation. To perform many units of business, the TPA may be
instantiated as many long-running conversations (serially or concurrently) as is appropriate to the
application and the processing capabilities of the parties' systems.

4



Figure 1 shows the main functions provided by the TPA. We now give a brief

Overall properties

Role
Identification

Communication properties

Security properties

Actions

Sequencing rules

Error handling

Figure 1: Key contract elements

overview of these functions. Section 4 describes the actual TPA language.

Overall properties of the TPA include its name, starting and ending dates, and similar global
parameters. The role section provides the means to define a TPA in terms of generic roles such
as airline and hotel and to produce a specific instance of the TPA by substituting specific parties
for the role parameters. The identification section specifies the organization names of the parties
and various contact information such as e-mail and postal service addresses. It also optionally
specifies an outside arbitrator to be used for settling disputes. Communication and security
properties include communication protocol (e.g. HTTP, SMTP), communication addresses,
authentication and nonrepudiation protocols, certificate parameters, etc.

For each party which can act as a server, there is an action menu which lists the actions that the
other party can request and various characteristics of those actions. Sequencing rules specify the
order in which actions can be requested on each server. Error handling rules are various
conditions related to error conditions, such as the maximum waiting time for the response to a
request.

4. Business to Business TPA Language

The TPA is an XML document from which code is generated at each of the trading partners'
computer systems. Authoring and code-generation tools are provided, as will be described later.
The TPA document is described by an XML Document Type Definition (DTD) or XML-Schema
file, which defines the tree structure of the TPA tags and some XML syntactic rules but not rules
defining specific values of the tags or the semantic interrelations among the tags. These
semantics are defined by a textual design document and are embodied in rules, understood by the
authoring tool, which aid in the creation of a valid TPA.



4.1 Overall Structure

The overall XML structure of the TPA is as follows. Each of these tags is the top level of a
subtree of tags (subelements). We will illustrate the following discussion with snippets of XML.

<TPA>
<TPAI nfo> <!-- TPA preanble -->
<I--TPAnane, role definitions,
participants, etc.-->
</ TPAI nf 0>
<Transport>
<!--comuni cation and transport
security information-->
</ Transport >
<DocExchange>
<! --docunent - exchange and nessage security
i nformation-->
</ Security>
<Busi nessPr ot ocol >
<Servicelnterface> <!-- for each provider-->
... <l--Action definitions etc.-->
</ Servi cel nterface>
</ DocExchange>
</ TPA>

4.2 Layer Structure of TPA

The <Busi nessPr ot ocol >, <DocExchange>, and <Tr ansport > sections describe the
processing of a unit of business (conversation). These sections form a layered structure
somewhat analogous to a layered communication model.

Business-Protocol Layer: The Business-Protocol layer defines the heart of the business
agreement between the trading partners: the services (actions) which parties to the TPA can
request of each other and sequencing rules that determine the order of requests. The
Business-Protocol layer is the interface between the TPA-defined actions and the
business-application functions that actually perform the actions.

Document-Exchange layer: The Document Exchange layer accepts a business document from
the Business Protocol layer, optionally encrypts it, optionally adds a digital signature for
nonrepudiation, and passes it to the transport layer for transmission to the other party.

Transport layer: The transport layer is responsible for message delivery using the selected

communication protocol. Transport security (encryption and authentication) definitions are also
provided.

4.3 Roles



When a given TPA can be repeatedly reused for different groups of parties, a prototype TPA or
template can be written in terms of role parameters rather than specific party names. The
authoring tool can then generate a specific TPA by substituting party names for the role
parameters and filling in specifics of those parties such as their electronic addresses. The role
definitions are included under the <TPAI nf 0> tag. Each <Rol eDef n> tag supplies a pair of
role parameter and actual name The <Rol eNanme> tag defines the name of each role. The
<Rol ePl ayer > tag has a blank value in a TPA template and the name of an actual party in a
specific TPA. Here is the XML for the role definitions for a TPA between an arbitrary airline
(@i rline)and an arbitrary hotel ( @ot el ). In this example, the tags under <Rol e>
particularize the TPA to an agreement specifically between Hotelco and Airlineco.

<Rol e>

<Rol eDef n> <l --one or nore-->
<Rol eNane>@hot el </ Rol eName>
<Rol ePl ayer >Hot el co</ Rol ePl ayer
</ Rol eDef n>

<Rol eDef n>
<Rol eNane>@i r | i ne</ Rol eName>
<Rol ePl ayer >Ai r |l i neco</ Rol ePl ayer >
</ Rol eDef n>

</ Rol e>

When the authoring tool replaces the role parameters by actual party names, it either asks the
author for party-specific information or finds this information in a previously-built database.

4.4 Transport Layer

In the transport layer, the communication properties section (<Conmuni cat i on> tag) defines
the details of the system to system communication used in the application. These include the
protocol to be used by both parties (e.g. HTTP, SMTP), each party's address parameters,
maximum allowed network delay, and other parameters. Following is an example of the
communication definition for HTTP:

<Communi cat i on>
<HTTP>
<Ver si on>ver si on</ Ver si on>
<HTTPNode> <!--One for each party-->
<Or gNane Partynane=nane/ >
<HTTPAddr ess>
<URL URLNane=t ype>ur| </ URL>
<I--additional URL tags as needed>
</ HTTPAddr ess>
</ HTTPNode>
<Net wor kDel ay>t i me</ Net wor kDel ay> <!--Optional-->
</ HTTP>
</ Communi cat i on>



The transport-security properties tags (not shown) define the security protocols to be used in
transporting messages. Protocols are defined for encryption and authentication. Encryption
information includes the name of the encryption protocol and various parameters defining the
certificates. Information supplied for authentication includes the type of authentication (e.g.
password or certificate), the specific protocol (e.g. SSL), and the certificate parameters.

4.5 Document-Exchange Layer

Information included in the document-exchange layer includes the name of the protocal, such as
OBI, the message-encoding choice (example: BASE64), whether or not duplicate messages
should be detected, and the message-security definition. Message security may be either or both
of digital-envelope (secret-key encryption using certificate-based encryption to exchange the
secret keys) and certificate-based nonrepudiation.

4.6 Business-Protocol Layer

The <Busi nessPr ot ocol > tag defines the section of the TPA which contains all the
business-protocol definitions that support the business application. Under

<Busi nessPr ot ocol > is the service interface definition for each party that can act as a
server. Each service interface contains some overall parameters and the action menu, which
contains the set of definitions of the actions that this party will accept as service requests. The
syntax is

<Busi nessPr ot ocol >
<Servicelnterface> <!--one or nore-->
... <l-- action nenu and other definitions-->
</ Servi cel nterface>
</ Busi nessPr ot ocol >

4.7 Action Definition

For each party to the TPA which can act as a server, there is an action menu which identifies the
permissible action requests and their characteristics. We discuss the main elements of an action
definition using the following OBI buyer action definition (See "Application Example").

<Acti on>
<Request >
<Request Name>pr ocessOBl POR</ Request Nane>
<Request Message>0Bl POR</ Request Message>
<I--OBIPOR is a keyword which specifies the format of
the nmessage, in this case a purchase order request-->
</ Request >
<Response>
<ResponseNanme>handl eOBIl PO</ ResponseNane>

8



<ResponseMessage>0Bl PO</ ResponseMessage>
<ResponseSer vi ceTi ne>
<Servi ceTi me>3600</ Ser vi ceTi ne>
<!-- 1-hour maximumtine -->
</ ResponseServi ceTi ne>
</ Response>
</ Acti on>

The request name is pr ocessOBI POR, i.e. the action transmits a purchase-order request to the
OBI buyer. The<Response> tag indicates that the response is by means of an asynchronous
message from the OBI seller server to the OBI buyer server and that the response causes the
handleOBIPO method to be invoked at the issuer of the action (here, the OBI seller server). The
response transmits a completed purchase order (OBl PO). The <ResponseSer vi ceTi ne>
tag specifies the worst case service time for the server (in this case, the OBI seller server) until
the response is returned. Here, it is 3600 seconds, i.e. 1 hour. If the specified time is exceeded, it
is up to the requester's application logic to decide what to do next.

Sequencing rules are used to specify the permissible order of action invocations on a given
server. The permissible initial action or actions is specified as follows, specified under the
<Servi cel nterface> tag.

<St ar t Enabl ed>
<Request Nane>act i on_nane</ Request Nane>
<l--one for each action permtted as the initial
action-->
</ St ar t Enabl ed>

There is one <St ar t Enabl ed> tag for each party which can act as a server. Only one of the
actions whose names are specified under <St ar t Enabl ed> may be invoked as the first action
in a given conversation on that server.

Within each action definition, a sequencing rule specifies which actions can no longer be invoked
following the completion of the particular action, and which actions become permissible
following the particular action. The specification is as follows:

<Sequenci ng>

<Enabl e> <l--actions permtted after this one-->
<Request Nanme>namne_of _acti on</ Request Nane>
</ Enabl e>

<Di sabl e> <!--actions not permtted after this one-->
<Request Nane>nane_of acti on</ Request Nane>
</ Di sabl e>
</ Sequenci ng>

The <Enabl e> tag specifies which actions are permissible following the action whose
definition contains the <Sequenci ng> tag. The <Di sabl e> tag specifies which actions are



no longer permitted after this action. We are investigating the possible need to extend the
sequencing rules to cover sequencing of actions across multiple servers.

Many error conditions are handled in standard ways by the framework and their handling is not
specified in the TPA. For example, the framework automatically retries for failures to receive
transport-level acknowledgments. Some errors, such as sequencing errors, may be severe enaugh
for the parties to invoke the arbitrator to determine whether a TPA violation occurred. Duplicate
messages are most likely to arise during recovery, when incomplete actions are retried. The TPA
can specify that if the recipient recognizes a duplicate message, the duplicate can be ignored. If
the duplicate is a request message, the server can then re-send the response message.

5. TPA Authoring and Code Generation

In order to utilize an electronic TPA, the TPA must first be composed and agreed to by the
parties. Then registration information must be extracted from the TPA and the necessary
executable code generated. There are many possible designs for the tools. The design choices
for the code generator and registration tool, in particular, depend on the specifics of the system in
which they work. There can be no requirement that the same code generator and registration tool
be used by both parties to the TPA. We here describe the tools we are developing as part of the
Coyote project (Dan et al 1998). In our project, these tools are implemented in Java.

Because the TPA is a complex document and XML is not an intuitive language, an authoring tool
is essential in preparing a TPA. Once the TPA is verified as valid and agreed to by both parties,
it is passed to the TPA registration tool at each party's site. This tool extracts some of the content
and stores the content in the registration database.

The business logic registration tool is used to associate actions which were specified in the TPA
with business functions of which is a service provider, so that when the an action is requested of
the service provider, the correct sequence of business functions is called.

The code generation tool uses information from the TPA and the registration database to convert
a collection of templates into the executable file.

5.1 Authoring Tool

There are two parts to creating a TPA. They are creating models of the tags and authoring a
specific TPA, guided by the models. The authoring tool provides a way for an expert to prepare
a model from which a TPA can be constructed by someone with far less knowledge of the
required semantics. The model contains the TPA semantic information needed to guide a user in
creating a correct TPA.

The authoring tool starts with a DTD or XML Schema document, which provides the syntactic
structure of the TPA. Then it constructs a model of a general TPA by asking the model maker to
provide examples (semantics) of all parts of the TPA. Once a model is complete, it is available

10



to any author who, by answering a few specific questions, can create a very complex TPA with a
high probability of success. Figure 2 illustrates the process of creating a model and a TPA.

Creating A Model Creating a Contract

Existing Imported
Model Model

TPA Authoring New Authoring New TPA
DTD Tool Model Tool Document,

TPA Exported
Document Model

Figure 2: Creating a Model

A model consists of a collection of models of the tags to be used in the TPA. The models are in
a tree structure which corresponds to the tree structure of the tags in the TPA. Each model of a
tag is an example of the subtree under the tag. For example, a tag representing a communications
protocol section has, as its subtree, information specific to a particular protocol.

The TPA author starts the authoring procedure after a model has been loaded. The authoring tool
now uses the model to drive the authoring procedure. Starting with the root of the model, the
authoring tool examines the choices for models beneath the root. If there is no choice to be
made, the authoring tool accepts the model, proceeds to the next level, and repeats the above
procedure for each child. If choices are to be made, a panel is displayed asking the user to select
the correct model. The authoring tool then continues with that choice.

5.2 Code Generation

The code generator transforms the TPA into registration information and code which enforces the
rules of interaction. A TPA object is created at the site of each party to the TPA. The code
generation process is illustrated in Figure 3.

Code generation starts from a set of templates which consist of a combination of native (Java or
any other) language and macro-style directives. These directives are written in a macro language
consisting of information such as a basic set of data types, a basic set of functions used to obtain
information from the TPA and other external sources, declaration statements, assignment

11



statements, and conditional statements which change the execution flow, depending upon values

Information
File

of variables and functions.

J
S

i Template Processor

TPA Registratio Other
Document Information Sources

Figure 3: Code generation

A macro processor scans the template looking for directives. It executes any directives it
encounters, and handles any native language statements as character strings, performing any
needed processing, and writing the processed statements to a file.

6. Application Example

This section describes an example of the TPA and server structure. for an existing public
protocol, OBI.

Open Buying on the Internet (OBI), Openbuying 1998, is a protocol for business-to-business
Internet commerce. It was designed by the Internet Purchasing Roundtable and is supported by
the OBI Consortium. OBI defines the procedures for the high-volume, low-dollar purchasing
transactions that make up most of an organization's purchasing activity. In this section, we
describe OBI, how it can be described by a TPA, and a schematic view of a possible
implementation. Figure 4 illustrates the participants in an OBI transaction and the basic
information flows. A complete OBI TPA is shown in the appendix.



Selling

Requisitioner ..
q Organization

Payment
Authority

Buying —~
Organization [

Figure 4. OBI Participants and Flows

The requisitioner is a member of the buying organization (e.g. an employee of a company) and is
permitted to place orders directly with the selling organization's merchant server. The
requisitioner can browse a catalog and place an order with the selling organization using a
browser. When the requisitioner has placed an order, the selling organization's server sends a
partial purchase order (purchase order request) to the buying organization's server. The buying
organization validates the purchase order request and transforms it into a complete purchase
order which it returns to the selling organization. The selling organization then prepares an
invoice or otherwise arranges for payment and ships the ordered merchandise. The payment
authority is an optional part of the system. Its purpose is to handle electronic payments. Using
the browser, the requisitioner can also view and update various information at the buying
organization server such as the requisitioner's profile, outstanding requests, etc. The
requisitioner can also check the status of an order at the selling organization.

An additional possibility is that the buying organization can send an "unsolicited" purchase order
to the selling organization without a prior request and partial purchase order initiated by a
requisitioner. This mode might be used, for example, when a purchasing department purchases
large volumes to supply a stock room.

In a one possible implementation of OBI, there is a TPA between the buying organization and the

selling organization, each of which has a business to business server. In OBI terms, the TPA is a
trading partner agreement (TPA). The payment authority, if present, is outside the scope of the

13



2-party TPA between buying organization and selling organization. It may interact with the
buying organization and the selling organization in a variety of ways. The interaction may be
through separate 2-party TPAs between the payment authority and the buyer and seller
organizations. It may also be simply through application programs.

Following are the main functions included in the OBI TPA:

* Organization names of the parties to the TPA.

e Communication protocol definition. In this case it is HTTP, and includes the specific URLs
of the buyer and seller.

* Security information such as the protocol (SSL in this case) and various certificate
parameters

* Action menus for the buyer and the seller. The action list for the buyer is illustrated above in
"Business to Business TPA Language". It consists of one action, "Process OBI Purchase
Order Request”. The completed purchase order is returned to the seller by means of a
callback. The action list for the seller also consists of one action, "Process OBI Unsolicited
Purchase Order".

Figure 5 shows the basic system structure and flow of an implementation of OBI. Shown in the
figure are the TPA objects generated from the TPA at the buyer and seller servers. These objects
provide the interfaces between various processes controlled by the TPA (in particular, the action
requests) and the application logic at each server.

. Seller
Requisitioner ) o
2. redirected to atalog an
| purchasing
- prefelfred functions
1. login supplier catalog Iy
Buy r Bus_iness t‘o '
Business to E]Lfrl]r;zsésr
business 3 ma
manage T Partigy o | |7
T Request PO
Appl. 52 \ . Gateway| @
logic C}O((\Q - Partial PO §
D TPA 8
4. Request . o
4. Cgnfirm | Approval Object Completed o
PO —
Gateway §
Gateway Local ]
Processes

Figure 5: OBI Implementation

The process starts when a requisitioner contacts(1) the buyer server via a browser and is
redirected(2) to the URL for the seller server. The requisitioner is shown the supplier catalog

14



appropriate to the requisitioner's organization. When the requisitioner makes a selection, the
request is communicated to the TPA object. The TPA object communicates the purchase request
to the local business processes via one of the gateways shown at the far right in the figure. A
partial purchase order is returned to the TPA object via the gateway. The TPA object then issues
the pr ocessOBI POR action request(3) to the buyer server, sending a partial purchase order to
the buyer server.

This request arrives at the buyer's TPA object, which evaluates the rules defined in the TPA and
then sends the partial purchase order to the buyer application logic. In processing the partial
purchase order, the application logic communicates with local business processes, via the
gateway shown at the lower left in the figure, to request approval(4) of the purchase order. If the
purchase is approved(4'), the approval arrives at the application logic, which completes the
purchase order and passes the completed purchase order to the buyer's TPA object. The TPA
object then issues the callback(5), sending the completed purchase order back to the seller.

The completed purchase order arrives at the seller's TPA object, which passes it to the local
processes via the gateway at the lower right. The local processes handle fulfillment (e.g.
shipping) and invoicing/payment. They also initiate a confirmation message to be returned to the
requisitioner via the browser (not shown in the figure).

7. Future Work

We are extending the TPA ideas and language to areas such as TPA hierarchy, linking of
multiple TPAs, and dynamic negotiation. We are also investigating TPAs in which there are
more than two parties.

In addition, we are investigating how to incorporate business constraints into the TPA. Business
constraints are conditions placed on data items in response messages. The results of these tests
may modify further processing within the TPA. An example is a test of whether a cancellation
action (e.g. to cancel a reservation) was issued during the allowed time range after the original
action.

8. Summary

This paper has discussed various issues in inter-business electronic interactions and in the use of
an electronic TPA for embodying the IT-related and business protocol terms and conditions used
in business to business electronic commerce. We have designed an XML-based TPA language
and tools for authoring TPAs in that language and generating code from the TPAs. We described
examples of two applications which make use of TPAs and showed schematic views of such
systems.

Acknowledgments

15



The authors express their appreciation to the following for contributions to the formulation of the
TPA principles and language: Francis Parr, Vibby Gottemukkala, Terry Lau, Satwinder Brar,
George Kleon, Gerald Anderson, John Ibbotson, Christine Draper, Linh Lam, Stewart Palmer,
Richard King, and Sastry Duri.

References

Corba: The Common Object Request Broker Architecture and Specification, Rev. 2.2, Object
Management Group, http://www.omg.org, 1998.

Dan, A., Dias, D., Nguyen, T., Sachs, M., Shaikh, H., King, R., and Duri, S., The coyote project:
framework for multi-party e-commerce, Proc. Research and Advanced Technology for Digital
Libraries, Second European Conference, ECDL'98, Heraklion, Greece, Sept. 1998, Springer
Verlag, Berlin, Germany, 1998, p. 873-889.

Dan, A. and Parr, F. An object implementation of network centric business service applications
(NCBAs), OOPSLA Business Object Workshop, Atlanta, GA, USA, Sept. 1997a.

Dan, A. and Parr, F., The coyote approach for network centric business service applications,
HPTS Workshop, Asilomar, CA, USA, 1997b.

Dan, A. and Parr, F. Long running application models and cooperating monitors, submitted to
HPTS workshop, Asilomar, CA, 1999.

Ejb: Enterprise Java Beans Specification, ver. 1.1, http://www.javasoft.com/products/ejb, 1999.

Garcia-Molina, H. and Salem, K., SAGAS, Proc. of ACM SIGMOD Conf., Association for
Computing Machinery, New York, NY,1987, pp. 249-259.

Gray, J. and Reuter, A., Transaction Processing: Concepts and Techniques, Morgan-Kaufmann,
San Mateo, CA, 1993.

Openbuying: Open Buying on the Internet Technical Specifications, Release V1.1, The Open
Buying on the Internet (OBI) Consortium, http://www.openbuy.org, 1998.

Weigand, H. and Ngu, A., Flexible specification of interoperable transactions, Data &
Knowledge Engineering, Vol. 25, 1998, pp. 327-345.

Wfmc: The Workflow Management Coalition Specification, http://www.wfmc.org, 1998.

16



Appendix: OBI TPA

Following is a TPA which defines OBI.

<?xm version="1.0"?>
<! DOCTYPE TPA SYSTEM " TPA. xsd" >

<! __**********************************************************************__>
<I-- Bl TPA between Large Co (buying conpany) -->
<I-- and Pens Are W (selling conpany) -->
<l-- (C Copyright |IBM Corporation 2000 -->
<! __**********************************************************************__>
<TPA xm ns="t pa. xsd" >
<! __**********************************************************************__>
<l-- General information -->
<! __**********************************************************************__>

<TPAI nf 0>

<TPANane>QBI St andar d</ TPANane>
<TPAType>

<Pr ot ocol >OBI </ Pr ot ocol >
<Ver si on>1. 0</ Ver si on>

<Type>SS</ Type>
</ TPAType>
<| __**********************************************************************__>
<Partici pant s>
<| __**********************************************************************__>
<l-- Specification of Buyer -->
<| __**********************************************************************__>

<Menber | dCodeType="2Z" Menber|d="777777777777777" >
<PartyName Partynane="_LargeCo">Large Co</PartyNane>
<ConpanyTel ephone>914- 945- 3000</ ConpanyTel ephone>
<Addr ess>
<Addr essType>l ocat i on</ Addr essType>
<Addr essLi ne>Lar ge Co</ AddressLi ne>
<Addr essLi ne>HQ Bui | di ng</ Addr essLi ne>
<Addr essLi ne>1 Main Street</AddressLi ne>
<City>Snal | Town</Cty>
<St at e>NY</ St at e>
<Zi p>10000</ Zi p>
<Count r y>USA</ Count r y>
</ Addr ess>
<Addr ess>
<Addr essType>bi | | i ng</ Addr essType>
<Addr essLi ne>Large Co</ AddressLi ne>
<Addr essLi ne>Account i ng Depart nent </ Addr essLi ne>
<Addr essLi ne>100 Bean Counters Road</ AddressLi ne>
<City>Any City</City>
<St at e>CT</ St at e>
<Zi p>06000</ Zi p>
<Count r y>USA</ Count r y>
</ Addr ess>
<Addr ess>
<Addr essType>shi ppi ng</ Addr essType>
<Addr essLi ne>Large Co</ AddressLi ne>
<Addr essLi ne>Pr ocur ement Depart nent </ Addr essLi ne>
<Addr essLi ne>99 Pur chase Road</ AddressLi ne>
<City>Buy City</City>
<St at e>NY</ St at e>
<Zi p>10001</ Zi p>
<Count r y>USA</ Count r y>
</ Addr ess>
<Contact Type = "primry">
<Last Nane>Smi t h</ Last Name>
<Fi r st Name>John</ Fi r st Nane>

17



<M ddl eNarme>L. </ M ddl eNane>

<Titl e>Senior Buyer</Title>

<Cont act Tel ephone Type = "primary">914-111-6789
</ Cont act Tel ephone>

<Cont act Tel ephone Type = "secondary">914-111-6790
</ Cont act Tel ephone>

<EMmi | Type = "primary">jjsmnmith@ argeco. conx/ EMai | >
<EMai | Type = "secondary">
http://ww. | ar geco. com procurenent/jsmith. htn
</ EMai | >
<Fax>914-111- 6780</ Fax>
</ Cont act >
<Cont act Type = "secondary">

<Last Nane>Bl ow</ Last Nanme>

<Fi r st Name>Joe</ Fi r st Name>

<M ddl eNanme>J. </ M ddl eNanme>

<Title>Buyer</Titl e>

<Cont act Tel ephone Type = "prinmary">914-111-6722
</ Cont act Tel ephone>

<Cont act Tel ephone Type = "secondary">914-111-6725
</ Cont act Tel ephone>

<EMai | Type = "primary">j bl ow@ ar geco. conx/ EMai | >

<Fax>914-111- 6780</ Fax>

</ Cont act >
</ Member >
<| __**********************************************************************__>
<l-- Specification of Seller -->
<| __**********************************************************************__>

<Menber | dCodeType="2ZZ" Menber| d="888000009000000" >
<PartyNane Partynanme="_PensAreW">Pens Are W
</ Par t yNanme>
<ConpanyTel ephone>945-123- 1000</ ConpanyTel ephone>
<Addr ess>
<Addr essType>l ocat i on</ Addr essType>
<Addr essLi ne>Pens Are W</ AddressLi ne>
<Addr essLi ne>Bui | di ng 001</ Addr essLi ne>
<Addr essLi ne>123 Hi gh Street </ AddressLi ne>
<City>Eart hQuake City</City>
<St at e>CA</ St at e>
<Zi p>94567</ Zi p>
<Count r y>USA</ Count r y>
</ Addr ess>
<Contact Type = "primry">
<Last Nane>Doe</ Last Nane>
<Fi r st Name>Jane</ Fi r st Nane>
<M ddl eNanme>E. </ M ddl eNanme>
<Title>Vice President of Internet Sales</Title>
<Cont act Tel ephone Type = "pri mary">945-123- 4567
</ Cont act Tel ephone>
<Cont act Tel ephone Type = "secondary">945-123- 4570
</ Cont act Tel ephone>

<EMai | Type = "primary">j anedoe@ensar ewe. conx/ EMai | >
<EMni | Type = "secondary">
http://ww. pensarewe. coni sal es/j doe. htm
</ EMai | >
<Fax>945- 123- 9999</ Fax>
</ Cont act >
</ Menber >
<!__**********************************************************************__>
<l-- Specification of Arbitrator >
<!__**********************************************************************__>

<Arbitrator |dCodeType="01" Menberl| d="888000009000001" >
<PartyName Partynanme="_XYZAr bi trat or">XYZAr bi tr at or </ Par t yNane>
<ConpanyTel ephone>780- 333- 1111</ ConpanyTel ephone>
<Addr ess>

18



<Addr essType>l ocat i on</ Addr essType>
<Addr essLi ne>XYZAr bi tr at or </ Addr essLi ne>
<Addr essLi ne>Sui t e 3</ Addr essLi ne>
<Addr essLi ne>77 Lawyers Bl vd</ Addr essLi ne>
<City>ABC City</City>
<St at e>MA</ St at e>
<Zi p>01234</ Zi p>
<Count r y>USA</ Count r y>
</ Addr ess>
<Contact Type = "primry">
<Last Nanme>Bl ack</ Last Nane>
<Fi r st Nane>Joe</ Fi r st Nane>
<M ddl eNanme>K. </ M ddl eNanme>
<Title>M.</Title>
<Cont act Tel ephone Type = "pri mary">780- 333- 4040
</ Cont act Tel ephone>
<Cont act Tel ephone Type = "secondary">780-333-4045
</ Cont act Tel ephone>
<EMmi | Type = "primary">j bl ack@yzarbitrator.com</EMil >
<EMai | Type = "secondary">
http://ww. xyzarbi trator.conljblack. htm </ EMai | >
<Fax>780- 333- 5000</ Fax>
</ Cont act >
</Arbitrator>
</ Partici pant s>
<Dur ati on>
<Start>
<Dat e>01/ 01/ 1999</ Dat e>
<Ti ne>00: 00: 00</ Ti ne>
</Start>
<End>
<Dat e>01/ 01/ 2001</ Dat e>
<Ti ne>00: 00: 00</ Ti ne>
</ End>
</ Dur ati on>
<l nvocati onLi m t >100000</ | nvocati onLi m t>
<Concurr ent Conver sati ons>1</ Concur r ent Conver sati ons>
<Conver sati onLi f e>86400</ Conver sati onLi f e>

</ TPAI nf 0>
<|__**********************************************************************__>
<l-- Specification of Transport Protocol #01 -->
<|__**********************************************************************__>

<Transport >
<Conmuni cat i on>
<HTTP>
<HTTPNode>
<OrgNane Partyname="_LargeCo"/ >
<HTTPAddr ess>
<URL URLNane="request URL" >
https://ww. | argeco. conij ackal / servl et/ OBl Buy</ URL>
</ HTTPAddr ess>
</ HTTPNode>
<HTTPNode>
<OrgNane Partynane="_PensAreW"/>
<HTTPAddr ess>
<URL URLNane="| ogOnURL" >
htt ps://ww. pensar ewe. com coyot e/ servl et/ OBl Logon</ URL>
<URL URLName="request URL" >
htt ps://ww. pensar ewe. com coyot e/ servl et/ OBl sel | </ URL>
<URL URLName="responseURL" >
htt ps://ww. pensar ewe. com coyot e/ servl et/ OBl sel | </ URL>
</ HTTPAddr ess>
</ HTTPNode>
<Net wor kDel ay>300</ Net wor kDel ay>
</ HTTP>

19



</ Communi cat i on>

<|__***************************~k*********~k********************************__>
<l-- Specification of Transport Security Protocol -->
<|__***************************~k*********~k********************************__>

<Transport Security>
<Encryption>
<Pr ot ocol >SSL</ Pr ot ocol >
<Ver si on>3. 0</ Ver si on>
<Certificate>
<Cert Type>X509. V3</ Cert Type>
<KeylLengt h>1024</ KeyLengt h>
<Party>
<OrgNane Partyname="_LargeCo"/ >
<l ssuer Or gNanme>Veri Si gn, Inc.</1ssuer Or gNane>
<l ssuer Cert Source>ht t p: // www. veri si gn.com certs
</ | ssuer Cert Sour ce>
</ Party>
<Party>
<OrgNane Partynanme="_PensAreWe"/ >
<l ssuer Or gNanme>GTE, |nc. </I|ssuer Or gNane>
<l ssuer Cert Source>http://wwm. gt e. conlf certs
</ | ssuer Cert Sour ce>
</ Party>
</Certificate>
</ Encrypti on>
<Aut henti cati on>
<Certifi cat eAut hen>
<Pr ot ocol >SSL</ Pr ot ocol >
<Ver si on>3. 0</ Ver si on>
<Certificate>
<Cert Type>X509. V3</ Cert Type>
<KeyLengt h>1024</ KeyLengt h>
<Party>
<OrgNane Partyname="_LargeCo"/ >
<l ssuer Or gNane>Veri Si gn, |nc.</IssuerO gNanme>
<l ssuer Cert Sour ce>htt p://ww. veri sign.com certs
</ 1 ssuer Cert Sour ce>
</ Party>
<Party>
<OrgNane Partynane="_PensAreW"/>
<l ssuer Or gName>GTE, | nc. </|ssuer O gNane>
<l ssuer Cert Source>http://ww. gt e. conmlcerts
</ | ssuer Cert Sour ce>
</ Party>
</Certificate>
</ Certificat eAut hen>
</ Aut hent i cati on>
</ Transport Security>
</ Transport >

<|__**********************************************************************__>

<l-- Specification of DocExchange Protocol -->

<|__**********************************************************************__>
<DocExchange>

<DocExchangePr ot ocol >0BI </ DocExchangePr ot ocol >
<MessageEncodi ng>BASE64</ MessageEncodi ng>
<Messagel denpot ency>yes</ Messagel denpot ency>

<|__**********************************************************************__>
<l-- Specification of Message Security >
<|__**********************************************************************__>

<MessageSecurity>
<NonRepudi ati on>
<Pr ot ocol >Di gi t al Si gnat ur e</ Prot ocol >
<HashFunct i on>MD5</ HashFunct i on>
<Encrypti onAl gorit hmRSA</ Encrypti onAl gorit hm
<Si gnat ur eAl gori t hm>DSA</ Si gnat ur eAl gori t hrre

20



<Certificate>
<Cert Type>X509. V3</ Cert Type>
<KeylLengt h>1024</ KeyLengt h>
<Party>
<OrgNane Partyname="_LargeCo"/ >
<l ssuer Or gNanme>Veri sign Inc.</I|ssuerOr gNane>
<l ssuer Cert Source>htt p: // www. veri sign.com certs
</ | ssuer Cert Sour ce>
</ Party>
<Party>
<Or gNane Partynanme="_PensAreWe"/ >
<l ssuer Or gName>GTE | nc. </ | ssuer Or gNane>
<l ssuer Cert Sour ce>htt p: / / www. gt e. coni cert s</ | ssuer Cert Sour ce>
</ Party>
</Certificate>
</ NonRepudi at i on>
</ MessageSecurity>
</ DocExchange>
<Busi nessPr ot ocol >

<|__***************************~k*********~k********************************__>
<l-- Specification of Service Interface 01 -->
<|__***************************~k*********~k********************************__>

<Servicelnterface Interfaceld="interface0l">
<OrgNane Partyname="_LargeCo"/ >
<dient>
<OrgNane Partynane="_PensAreW"/ >
</dient>
<Act i onMenu>
<Action Actionld="action01" Type="basic">
<Request >
<Request Name>put OPOR</ Request Nanme>
<Request Message>0BI POR</ Request Message>
</ Request >
<Response>
<ResponseNanme>get OPO</ ResponseNane>
<ResponseMessage>0Bl PO</ ResponseMessage>
<ResponseServi ceTi ne>
<Servi ceTi me>3600</ Servi ceTi me>
<Pr esune>f ai | </ Presune>
</ ResponseServi ceTi ne>
</ Response>
</ Acti on>
</ Acti onMenu>
<Server Servi ceTi ne>
<Servi ceTi me>3660</ Servi ceTi me>
<Pr esune>f ai | </ Presune>
</ Server Servi ceTi ne>
<St art Enabl ed>
<Request Nane>put OPOR</ Request Nanme>
</ St art Enabl ed>
</ Servicel nterface>

<!__**********************************************************************__>
<l-- Specification of Service Interface 02 -->
<!-- This interface belowis for UnSolicited OBl PO from -->
<l-- buying organization to selling organization -->
<!__**********************************************************************__>

<Servicelnterface Interfaceld="interface02">

<OrgNane Partynane="_PensAreW"/>
<dient>

<OrgNane Partyname="_LargeCo"/ >
</Cient>
<Act i onMenu>

<Action Actionld="action03" Type="basic">

<Request >
<Request Nane>shop</ Request Nane>

21



<l--lnitiates shopping at nerchant server-->
<Request Message>shopMessage</ Request Message>
</ Request >
</ Acti on>
<Action Actionld="action02" Type="basic">
<Request >
<Request Nane>put OPO</ Request Nane>
<Request Message>0BI PO</ Request Message>
</ Request >
</ Acti on>
</ Acti onMenu>
<Server Servi ceTi ne>
<Servi ceTi me>3660</ Servi ceTi me>
<Pr esunme>f ai | </ Presune>
</ Server Servi ceTi ne>
</ Servi cel nterface>
</ Busi nessPr ot ocol >
</ TPA>

22



