
RegRep Classification /Interfacing version 0.1
 Page 1

RegRep Classification / Interfacing 1

Draft, Version 0.1, 13 September 2000 2

Working Document. 3

 4

Abstract 5

The need is to define both the classification system and the associated interface semantics 6
for RegRep as XML structures and methods. 7

Status 8

This draft represents the blending of current practical work in a variety of areas with 9
XML, including the latest W3C Schema and Datatyping drafts, ISO11179, OASIS 10
Registry and IETF WebDav DASL work. 11

Contributors 12

Document Editor: TBD 13

Contributors: 14

David RR Webber. 15

16

RegRep Classification /Interfacing version 0.1
 Page 2

1. Table of Contents 16

 17
RegRep Classification / Interfacing 18

Draft, Version 0.1, 13 September 2000 19
Abstract 20
Status 21
Contributors 22
1. Table of Contents 23
2. Introduction 24

2.1 Design Goals 25
2.2 Terminology and Concepts 26

2.2.1 Classification 27
3.2.1 Coded Classification Scheme 28
4.2.1 Package 29
5.2.1 Query 30
6.2.1 Change Request 31

2.3 Relationship of Information Model 32
2.4 Attribute Types 33
2.5 Enumeration Entities 34

3.5.1 DefinitionSource 35
4.5.1 PrimaryClassification 36
5.5.1 SecondaryClassification 37
6.5.1 AssociationType 38
7.5.1 ContactAvailability 39

2.6 Default Classification Structures 40
3. Registry Interfacing Models 41

3.1 Relation to IETF WebDav DASL work 42
3.2 Interfacing Models 43

3.2.1 The TRP Interface Model 44
4.2.1 The TPA Interface Model 45
5.2.1 The BP/CC (ebXML GUIDE) Interface Model 46
6.2.1 Alignment with TRP Interface and Security Model 47

3.3 Examples of Registry Interfacing 48
3.4 The ebXML RegRep linking 49
3.5 Type systems 50
3.6 Relationship of and use of Bizcodes 51

4. Tutorial and Use Case 52
5. Addendum 53

 54

55

RegRep Classification /Interfacing version 0.1
 Page 3

2. Introduction 55

The objective of this document is to provide the necessary details for a understanding and 56
specification details of the classification and interfacing to information stored in an 57
ebXML compliant Registry/Repository. 58

The top level is the classifications. This mechanism allows you to group together industry 59
vertical sets of transactions so you can quickly and easily find the particular business 60
functional components that you require based on business use and context. 61

 62

2.1 Design Goals 63

The ebXML principles require that the XML syntax used must be: 64

1) Simple to understand, to learn, read and use. 65

2) Provide a concise feature function set thereby ensuring consistent implementations, 66
interoperability, and low cost of adoption. Each feature must earn its place based on 67
widespread business need and applicability. 68

3) Separate the query, change and representation syntax, and use existing work such as 69
IETF WebDav DASL wherever possible. 70

4) Support the storage and retrieval of ebXML Business Process and Core Component 71
definition methods. 72

5) Provide a human interface for information discovery via a direct browser form based 73
interactions and allowing rendering with multilingual support. 74

7) Provide a simple metaphor to migrate and express existing data dictionaries and 75
related content such as COBOL copybooks, SQL table definitions, CICS structures, 76
program data structures, business data dictionaries and similar information content 77
quickly and easily into. 78

8) Be based on the W3C XML markup syntax, with minimal use of extended features, 79
and be consistent with and interoperable with the ebXML technical specifications. 80

9) Above all, provide both large industry partners and small businesses with mission 81
critical high volume, high performance, and open public standard based interchanges. 82
Coupled with the long term means to conduct and maintain cost effective electronic 83
information exchanges that can be simply deployed and exploited by as large a cross-84
section of the workforce as possible. 85

86

RegRep Classification /Interfacing version 0.1
 Page 4

2.2 Terminology and Concepts 86

The following extracts are provided to aid understanding of this document. 87

2.2.1 Classification 88

A classification is a partition of a given collection of items into mutually exclusive and 89
collectively exhaustive sub-collections. A classification depends upon a pre-existing 90
specification of a hierarchy of values, names, and codes called a classification scheme. 91
Registry items in a Registry may be classified by as many classification schemes as 92
deemed appropriate by the Submitting Organization. A classification scheme can have 93
an associated XML structure that defines the information within the classification. An 94
example would be currency table that has currency code, currency symbol, name, country 95
code, conversion rate and date associated with it. Classifications may be referential; so 96
one classification may depend on another classification. 97
 98
A distinction can therefore be made between classifications that describe physical 99
business content as above, and classifications that describe collections of like information 100
within the registry itself, such as XML structure layouts associated with business 101
processes. 102

3.2.1 Coded Classification Scheme 103

A coded classification scheme is a hierarchy of values that can be referenced by a 104
classification. A coded classification scheme can vary from a simple set of values to a 105
complex multi-level hierarchy. An example of a simple single-level coded classification 106
is the set {Freshman, Sophomore, Junior, Senior} used to partition a collection of 107
students. An example of a more complicated classification scheme is one based on the 108
hierarchy of all living things with named levels for Kingdom, Phylum, Class, Order, 109
Family, Genus and Species. 110

4.2.1 Package 111

A Package is a conceptual notion used to identify a set of registered objects. It is defined 112
to be a registered object that is a set of pointers to other registered objects. Using this 113
definition, a package can represent a hierarchy of registered objects, where non-terminal 114
nodes of the hierarchy are other packages and terminal nodes are package or non-package 115
objects. A package is a terminal node in a package hierarchy if and only if the package is 116
empty. A registered object may be pointed to by several different packages. A package 117
relationship between a registered package and some other registered object pointed to by 118
a package element is represented by the contains role in an association instance. 119
 120
Since the representation of a registered object is defined to be a file, the file representing 121
a package object is an XML document. 122

RegRep Classification /Interfacing version 0.1
 Page 5

5.2.1 Query 123

A query is a message from a public user of a registry database to a registry, asking that 124
certain information be returned. A request is sent in the form of an XML document that 125
validates to one of the XML query DTD's defined elsewhere in this specification. The 126
response to a query will validate to the associated XML response wrapper DTD. 127

6.2.1 Change Request 128

A request is a message sent from a Submitting Organization to a Registration Authority 129
asking that certain additions or modifications be made to the Registry. A request is 130
generally sent in the form of an XML document that validates to one of the request 131
DTD's defined elsewhere in this specification. A request instance will consist of a request 132
code to identify the type of request as well as the XML content of a specific request. 133
 134

Further details on the terminology definitions can be found from the OASIS Information 135
Model document, and the ebXML Part 1 Repository specifications document. 136

 137

2.3 Relationship of Information Model 138

The objective is to provide layers of XML classification syntax for the ebXML 139
functionality of TPA, BP and CC, a legacy EDI data dictionary, TRP and any directly 140
associated content such as UDDI that naturally overlay onto the classification system 141
required by an ebXML compatible Registry system. Once such approach here is the 142
ebXML GUIDE classification system (http://www.xmlguide.org). 143

Similarly an ebXML compatible registry change or query request can then be mapped 144
into an existing classification XML structure. Such change or query requests can then be 145
easily structured relative to the XML structure using WebDav style DASL querying 146
mechanisms. 147

Further work is underway to similarly provide a bridge to an ISO11179 compatible 148
repository at the level of the element definition layer. 149

The following figure illustrates the Registry classification model expressed as an OASIS 150
information model. For ebXML the classification syntax noted above: TPA, TRP, 151
BP/CC/EDI (GUIDE), and UDDI each constrain the content information model to 152
discrete sets. 153

The difference is therefore that the OASIS design is a generalized information model, 154
while the ebXML is designed for business transactional information use and is therefore 155
optimized to provide those interactions. 156

RegRep Classification /Interfacing version 0.1
 Page 6

Also ebXML Registry/Repository has extensions and transformation support that OASIS 157
registry does not provide. 158

Figure 3. OASIS Registry Information Model 159

Registry Item

Association

Classification
- Name
- Level
- Value

Alternate Name (s)
- Role
- Name

Oasis Specialization
(4 models)

Oasis Action
- Uses
- Supercedes
- Replaces
- Contains
- Rollup

Related Data
- Name
- URL
- Role

Alternate Description

Contributor

 160

For more extended information on the OASIS registry specifications please see 161
http://www.xml.org and associated content. 162

 163

2.4 Attribute Types 164

Attribute values in the information model will be one of the following types: 165
 166
• Entity References 167
• Base Types 168
 169
Some attribute values will be references to entity instances and some will be primitive 170
types that can be represented as character strings, numbers, dates, or dates and times. 171
Identified entity references include one of the following types: 172
 173
 REGISTRY_ITEM 174
 ORGANIZATION 175
 CONTACT 176
 SUBMISSION 177
 178
To this list we add the Enumeration Entities defined below. 179

RegRep Classification /Interfacing version 0.1
 Page 7

 180
The following definitions identify the base types that will be used in this specification. 181
 182
CodeText (valid XML tag name or reference URI) -- a character string consisting entirely 183
of visible characters from an implied character set. The presence of non-visible 184
characters, even blank spaces, is an error. In XML environments, CodeText may not 185
contain XML characters with special meaning. These include the ampersand (&), etc. 186
 187
ShortDescription -- a character string consisting of visible characters from an implied 188
character set, together with optional use of blank spaces. Any other non-visible characters 189
are ignored during processing, and other non-visible characters are stripped out before 190
acceptance as a value of an attribute having this datatype. 191
 192
Date -- a value that represents a calendar date, constrained by the natural rules for dates 193
using the Gregorian calendar. A Registry will be able to respond to queries involving 194
minimal date arithmetic, e.g. finding all instances of an entity having dates for a given 195
attribute that fall within a given range, or finding all instances having dates in the past 30 196
days, or finding all registry items whose registration is scheduled to expire in the next 3 197
months, etc. More advanced date arithmetic or date manipulation is at the discretion of 198
the Registry. 199
 200
Date Literal -- a character string value that identifies a specific date. A date literal string 201
is of the form YYYY-MM-DD where YYYY is an integer literal for the year, MM is an 202
integer literal for the month of the year, and DD is an integer literal for the day of the 203
month. Whenever a date value is presented to a user, or requested from a user, the date 204
value is presented or transmitted as the equivalent date literal. 205
 206
Datetime -- a value that represents a calendar date and a time within that date, with time 207
precision to the minute, or finer. Unless otherwise indicated time is Universal 208
Coordinated Time based on a 24-hour clock. A Registry has the capability to convert a 209
Datetime type to a Date type, with the expected loss of precision. Any other datetime 210
arithmetic or datetime manipulation is at the discretion of the Registry. 211
 212
Datetime Literal -- a character string value that identifies a specific datetime. A datetime 213
literal string is of the form YYYY-MM-DD HH:MM:SS where YYYY is an integer 214
literal for the year, MM is an integer literal for the month of the year, DD is an integer 215
literal for the day of the month, HH is an integer literal for the hour (assuming 24-hour 216
clock), MM is an integer literal for the minute within the hour, and SS is an integer literal 217
for the second within the minute. Whenever a datetime value is presented to a user, or 218
requested from a user, the datetime value is presented or transmitted as the equivalent 219
datetime literal. 220
 221
SmallInt -- A non-negative integer with value less than 2**16. 222
 223

RegRep Classification /Interfacing version 0.1
 Page 8

URNref -- a character string that conforms to the format of a Uniform Resource Name 224
(URN) as specified by IETF RFC 1241. The length of a URNref string is less than or 225
equal to 150 characters. 226
(See http://www.ietf.cnri.reston.va.us/rfc/rfc2141.txt?number=2141) 227
 228
URLref -- a character string that conforms to the format of a Uniform Resource Locator 229
(URL) as specified by W3C. The length of a URLref string is less than or equal to 150 230
characters. 231
(See http://www.w3.org/Addressing/URL/5_BNF.html) 232
 233
FTPref -- a character string that conforms to the format of a File Transfer Protocol (FTP) 234
Uniform Resource Locator (URL) as specified by W3C. The default user name is 235
"anonymous". The length of an FTPref string is less than or equal to 150 characters. 236
(See http://www.w3.org/Addressing/URL/5_BNF.html) 237
 238
FILEref -- a character string that is a URLref or an FTPref. 239
 240
MIMEtype – a character string that identifies a MIME type, as listed in the official list of 241
all MIME media-types assigned by the IANA (Internet Assigned Number Authority). The 242
length of a MIMEtype string is less than or equal to 150 characters. 243
(See ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types) 244
 245
LanguageId -- a character string that identifies a human language and a country where 246
that language has evolved. In general, it is of the form "xx-CC", where xx is a two 247
character code (lowercase) for a human language and CC is a two character country code. 248
Legal strings are specified by Language Identifier, definitions [33] through [38] in W3C 249
XML 1.0. (http://www.w3.org/TR/REC-xml#sec-lang-tag). 250
 251
CharEncoding -- a character string that identifies the encoding of a character set. It is 252
specified by the encoding name (EncName) of an Encoding Declaration, definition [81] 253
in W3C XML 1.0. 254
(http://www.w3.org/TR/REC-xml#charencoding). 255

256

RegRep Classification /Interfacing version 0.1
 Page 9

2.5 Enumeration Entities 256

Many of the attributes declared to be of type CodeText will have an additional constraint 257
that the CodeText value match a specific value from a pre-defined list of values. The 258
Registry information model represents such lists as entities with a fixed number of entity 259
instances. We define such entities to be enumeration entities. 260

3.5.1 DefinitionSource 261

SourceCode SourceName Description
EbXML Author of the ebXML

Registry/Repository specification.
IEEE_LOM IEEE Learning Technology -

Learning Object Model
Author of the IEEE LOM Registry
specification.

IMS Author of the IMS Registry specification.

OASIS Organization for the Advancement
of Structured Information
Standards

Author of the OASIS Registry/Repository
specification.

 262

4.5.1 PrimaryClassification 263

Source Code Name Description
ebXML defn Definition An XML definition document.

ebXML inst Instance An XML instance document.
ebXML pkg Package A package of registered items.

ebXML other Other (mimetype) Binary content, must be related to a
registered item.

 264

5.5.1 SecondaryClassification 265

Items within definition and instance may be of related XML types such as XSL, xhtml 266
and so forth. The default is XML, but MIMETYPE as an attribute may be used to qualify 267
the exact content. Only content labelled by an applicable MIMETYPE will be accepted. 268
An ebXML registry may choose to limit or validate MIMETYPE content, as it requires. 269

2.5.1 Submission Semantic Rules 270

1. The RegistryItem entity represents the set of all registered objects in the Registry. 271
Each instance identifies a single registered object. A registry item instance holds only 272

RegRep Classification /Interfacing version 0.1
 Page 10

some of the metadata for a registered object; other metadata is held by other entities 273
in the Registry. 274

 275
2. Each registry item instance is assigned a unique identifier by the Registration 276

Authority (RA). This implicit value is said to be of type REGISTRY_ITEM. It is used 277
to represent relationships of this instance with other information in the Registry. 278

 279
3. The AssignedURN name is created and assigned by the RA. It is created to be unique 280

within a conforming Registry/Repository implementation. When a Submitting 281
Organization (SO) makes a submission to the Registry, it provides a local reference 282
name of type CodeText. If possible, the RA uses that name to construct the 283
AssignedURN. 284

 285
4. The CommonName is provided by the SO. 286
 287
5. The Version is provided by the SO. It can have an arbitrary format and is used only to 288

help distinguish one registry item from another having the same common name. The 289
AssignedURN will be different for different versions. 290

 291
6. The ObjectLocation is a URL that identifies the location of the registered object. If 292

the RA is also a repository for the item, then the RA will download the item, store it 293
in the Repository, and create an http-based locator as a value for ObjectLocation. If 294
the Registry is not also a Repository, then the ObjectLocation is provided by the SO 295
and the RA has no further responsibility. The SO may also qualify the content with an 296
AccessChannel. The ObjectLocation URL may need to be supplemented with 297
channel and password information before the file containing the object can be 298
retrieved. An ebXML Registry may then distinguish access to information within 299
itself by utilizing AccessChannel rights, and assigning users to particular access 300
channels. 301

 302
7. The DefnSource takes its value from the DefinitionSource enumeration entity that 303

identifies a collection of accredited Registry/Repository development organizations. 304
If the Registry claims conformance to the ebXML Registry/Repository, then the 305
DefnSource is ebXML. 306

 307
8. The PrimaryClass is provided by the SO and takes its value from the 308

PrimaryClassification enumeration entity. If the DefnSource is ebXML, then 309
PrimaryClass identifies an element of the set {Definition, Instance, Package, Other}. 310
 311

 312
a) The SecondaryClassification is provided by the SO and takes its value from the 313

enumeration entity and must be a valid MIMETYPE. 314
 315

The RelatedType is provided by the SO and takes its value from the RelatedDataType 316
enumeration entity. 317

 318

RegRep Classification /Interfacing version 0.1
 Page 11

9. The RegStatus is provided by the RA with its value taken from the RegistrationStatus 319
enumeration entity. For ebXML registrations, that entity includes the values 320
{Baseline, Submitted, Registered, Superseded, Replaced, Withdrawn, Expired}. The 321
StatusChg attribute is the datetime that the RA last approved a change for RegStatus. 322

 323
10. The Stability attribute is provided by the SO with its value taken from the Stability 324

enumeration entity. For ebXML registrations, that entity includes the values {Static, 325
Dynamic, Compatible}. 326

 327
11. The ExpiryDate is assigned by the RA upon suggestion from the SO. Some RA's may 328

follow very definite procedures for the length of time an object can remain registered 329
before an affirmation or withdrawal action is required. If the Expiration date passes 330
without an SO action, then the RA initiates an expiration action. 331

 332
12. The Description is provided by the SO. 333
 334
13. The SubmittingOrg identifies the organization submitting the registered object. It 335

points to a unique instance of the ORGANIZATION entity. On presentation of this 336
information, the RA substitutes the CommonName of the organization. The SO must 337
be known to the RA before it can make submissions to the Registry/Repository, and 338
they each know of a unique URN for the other. The process for becoming known is 339
not part of this specification. 340

 341
14. The ResponsibleOrg identifies the organization responsible for the formal 342

specification of the registered object. It points to a unique instance of the 343
ORGANIZATION entity. The RO may be a formal accredited standards development 344
organization or it may be the SO. On presentation of this information, the RA 345
substitutes the CommonName of the organization. 346

 347
15. The PublicComment may be suggested by the SO, but it is supplied by the RA. In 348

most cases the comment will explain some administrative process that cannot be 349
clearly determined from the standardized information. For example, this comment 350
may explain how long the metadata for a replaced or withdrawn object remains 351
available, or how long an expired object remains available before it is deleted. 352

353

RegRep Classification /Interfacing version 0.1
 Page 12

 353

6.5.1 AssociationType 354

Source Code Name Description
ebXML contains Contains Given item is a package that contains the

associated item.
ebXML related Related Given item is related to associated item

and provides supplemental information for
the associated item.

ebXML supersedes Supersedes Given item supersedes associated item.
ebXML uses Uses Given item uses associated item.
 355

7.5.1 ContactAvailability 356

Source Code Name Description
ebXML Priv Private Contact available only to SO and RA.
ebXML Prot Protected Contact available only to RA's.
ebXML Pub Public Contact available to all users of registry.

357

RegRep Classification /Interfacing version 0.1
 Page 13

2.7.1 Structure 357

Attribute Name Attribute Type Presence
AssignedURN URNref Mandatory
CommonName ShortName Mandatory
Version CodeText
ObjectLocation FILEref
DefnSource CodeText Mandatory
PrimaryClass CodeText Mandatory
SubClass CodeText
RelatedType CodeText
MimeType MIMEtype Mandatory
RegStatus CodeText Mandatory
StatusChg Datetime Mandatory
Stability CodeText Mandatory
PayStatus CodeText Mandatory
ExpiryDate Date Mandatory
Description DescriptionText Mandatory
SubmittingOrg ORGANIZATION Mandatory
ResponsibleOrg ORGANIZATION Mandatory
PublicComments CommentText

2.7.2 Semantic Rules 358

1. The RelatedData entity represents the set of non-registered objects that are related to 359
registered objects. Each instance is a pairwise relationship between a single registered 360
item and a single related data item. A registered item may map to many related data 361
items. 362

 363
2. Each instance of RelatedData depends upon a RegistryItem instance. This 364

dependency is represented by an implicit value, RAitemId, of type 365
REGISTRY_ITEM. 366

 367
3. The DataName attribute is provided by the SO. It is intended that this be the link 368

name for the DataLocation if related data items are presented visually to a user. 369
 370
4. The DataLocation is provided by the SO. This link is not under the control of the RA 371

and it may point anywhere. The RA is under no obligation to ensure that the link is a 372
valid one. 373

 374
5. The RelatedType is provided by the SO and takes its value from the RelatedDataType 375

enumeration entity. It may include values not defined by OASIS. 376

RegRep Classification /Interfacing version 0.1
 Page 14

 377
6. The MimeType is provided by the SO. It identifies the MIME type of the related data 378

item. The RA is under no obligation to ensure that the declared MimeType type is 379
consistent with the actual file type of the file referenced by DataLocation. 380

 381
7. The Comment is provided by the SO. It may further explain the relationship between 382

the related data instance and the registry item it is linked to. 383

2.6 Default Classification Structures 384

The ebXML Registry is pre-loaded with a set of default classification structures. These 385
fall under two categories. The first category covers the ebXML components such as 386
ebXML TRP, TPA, BP/CC and the Query/Response DASL mechanisms themselves. 387
The second category covers supporting and reference domains as elements that are basic 388
primitives that underpin the TRP, TPA and BP/CC definitions themselves. From these 389
basic building blocks the ebXML Registry can then accept further business domain 390
definitions and content.391

RegRep Classification /Interfacing version 0.1
 Page 15

 392

3. Registry Interfacing Models 393

 394

3.1 Relation to IETF WebDav DASL work 395

Generally speaking the ebXML approach is to follow the DASL approach and provide a 396
focused subset of a business functional feature set based on those technology neutral 397
technical specifications (see http://www.webdav.org for more details). The WebDav 398
DASL approach provides an ideal widely supported lightweight XML based interaction 399
model. 400

3.2 Interfacing Models 401

The ebXML Technical Architecture specifications detail the actual registry/repository 402
interfacing required for each of the components of ebXML. The figure shown here 403
illustrates these as a set of interface services to be provided. This approach allows us to 404
define discrete interface XML structures to implement these with. 405

Figure 4. The ebXML Registry Interfaces 406

access

action

access

action
access

action

values

Library Management
System Functionality

T
R

P

BP/CC

T
P

A

API

structure

values

API

structure

Admin'

Human

values

API

structure

Traverse

Human

Interface Interface
Interface

 407

Shown are three interface components to the major ebXML modules of TRP, TPA and 408
BP/CC. The role and actors (see ebXML Registry/Repository Specifications Part 1) 409
determine the types of interactions supported by these interfaces. Therefore TRP does 410

RegRep Classification /Interfacing version 0.1
 Page 16

not warrant a human interface capability since only machine-to-machine interactions are 411
required with the Registry. 412

The library management system functionality essentially treats the internal mechanisms 413
within the ebXML Registry implementation as a ‘blackbox’ that supports the 414
requirements as laid out in both the overall ebXML Requirements document, the 415
Registry/Repository Part 1 and the Registrar, DocumentManager and TPAManager noted 416
elsewhere in this document. This approach allows any such capable existing document 417
management or library system to be exposed as an ebXML Registry using the appropriate 418
WebDav DASL interfacing bindings. 419

Each of the interfaces is now described functionally and then in the following section 420
actually interchange XML structure specifications are shown. The common theme is that 421
any registry interface will consist of the components, Access, Action, Structure and 422
Values. These correspond to the similar DASL approach of technology neutral bindings. 423

The definition of each of these is: 424

1. Access - The profile that describes the access allowed, includes an optional channel 425
through which information is accessed, and an associated user account and optional 426
password. The user account will have an associated ebXML TPA profile. 427

2. Action – The particular action to be performed, either a Query, or a Change Request 428
and then an optional post-processing action and optional error action. 429

3. Structure – the associated XML structure of both the request format and also the 430
response format. These will be associated using either a URL or a namespace. 431

4. Values – the actual content values in either the request, or the response XML payload 432
details. 433

3.2.1 The TRP Interface Model 434

The TRP interface provides a machine level Application Programming Interface (API) 435
using WebDav DASL based interactions. The TRP interface is primarily concerned with 436
verifying transport related content in the ebXML-messaging envelope. For this it 437
requires to access classification structure information, semantic business information and 438
actual content values to ensure compliance. Therefore request/response mechanisms are 439
required for these interactions. The interaction content and functionality themselves are 440
more fully described in the ebXML TRP Specifications. 441

4.2.1 The TPA Interface Model 442

The TPA interface provides both a machine level API and a human level interface. The 443
human level interface is required to support TPA management and administration. While 444
API calls will underpin the actual human interface, and the actual mechanics and look 445
and feel of the human interface are not prescribed, it is important to state in the 446
specifications that a human interface is provided. This is to ensure that authentication 447
and verification of critical trading partner information is possible locally for the registry 448

RegRep Classification /Interfacing version 0.1
 Page 17

administrator, and other than through a remote API interface. The specific human 449
interface functionality that is required is: 450

1. The ability to query on and review an individual TPA entry details. 451
2. The ability to update and change an individual TPA entry details. 452
3. The ability to setup access profiles and then to assign these to TPA entries. 453

Meanwhile the API machine-to-machine interfacing provides trading partner information 454
to compliment the TRP API by providing specific verification information and also to 455
provide search capabilities for Business Process related querying. Therefore the TPA 456
API interface may be used to discover capable trading partners within an industry or 457
business process domain. Again, the TRP messaging specifications are sufficiently clear 458
on the requirements to access TPA content and at that level of access require strictly 459
query/response interchanges with optional access logging to implement. 460

5.2.1 The BP/CC (ebXML GUIDE) Interface Model 461

The BP/CC interface provides both a machine level API and a human traversal discovery 462
interface. This human interface is intended primarily to be used by business analyst staff 463
researching content and business processes within the registry. Such human interface 464
interactions are intended to use a topic map style presentation of the related information 465
within the Registry organized according to the business process classification system 466
inherent in the Registry. The ebXML GUIDE specifications provide the classification 467
layer content to drive this functionality and the ebXML BP and CC specifications provide 468
the specialized content structures within the classification layer. This functionality is also 469
a discrete focused business tool that allows industry domains to publish their business 470
processes either generically, or particular to either groups of trading partners or 471
individual businesses within the industry. While API calls will underpin the actual 472
human interface, and the actual mechanics and look and feel of the human interface are 473
not prescribed, it is important to state in the specifications that a human interface is 474
provided. Each industry implementation may differ in the style of information 475
presentation and scope made available and this specification is not attempting to dictate 476
those aspects. Instead a list is presented here of human functionality that can be enabled. 477

1. Tree based topic map traversable structure that provides a review of business domain, 478
and the industry partners and the business processes supported by the registry. 479

2. Ability to query on a specific classification details within an industry and return a list 480
of applicable element definitions for review. 481

3. Ability to query on an item by unique reference identifier and return that content item 482
for display and review. 483

4. The ability to submit changes to the content details within the registry. 484

 485

The machine API calls that underpin the human interface then provide the same 486
functionality in machine-to-machine interfacing with the BP/CC content within the 487

RegRep Classification /Interfacing version 0.1
 Page 18

Registry. By specifying a discrete set of ebXML GUIDE classification structures this 488
reduces the need for ebXML based business applications to perform complex discovery 489
interactions with an ebXML Registry to determine the actual semantics of information 490
content. This both speeds access and makes for more consistently interoperable 491
interchanges. 492

6.2.1 Alignment with TRP Interface and Security Model 493

Reviewing the DASL approach and the MIME based approach TRP approach there are 494
significant similarities in the formatting and structure of the interchanges. We do not 495
anticipate that the differences where they exist between the two systems will present 496
particular implementation challenges, particularly as WebDav is now a widely supported 497
open cross-platform specification. 498

The TRP messaging model already has an envelope structure that contains specific 499
information regarding the trading partner and authentication and verification information. 500
However, these same mechanisms are not always applicable to adopting wholesale for 501
the Registry access, as the business functional needs are different. We also face a very 502
real ‘Catch22’ situation where the information in the TRP header requires access to the 503
Registry to access the TPA within the Registry. The solution is to link the Registry 504
WebDav DASL accessing to the same content as the TRP exchange uses for TPA 505
verification within the Registry through a lightweight DASL query mechanism that still 506
provides sufficient security and authentication measures. Such information inside the 507
TRP envelope can then be optional encrypted using the recipient’s public encryption key. 508
The TRP services can then issue DASL requests based off the information in the TRP 509
envelope header alone and this then ensures consistency. 510

The WebDav DASL system also has its own error response handling system, so this 511
removes the need for ebXML Registry/Repository interfaces to define these mechanisms 512
as they are provided in the interchange. 513

 514

515

RegRep Classification /Interfacing version 0.1
 Page 19

3.3 Examples of Registry Interfacing 515

The WebDav DASL approach provides an ideal widely supported lightweight XML 516
based interaction model. 517

Further more the DASL system provides an extensible interface specification, so ebXML 518
compatible query and response structures can be registered and then utilized within a 519
DASL XML wrapper. For more information on DASL see http://www.webdav.org). 520

Example 1 ebXML Registry DASL query structure 521

This example illustrates a simple query to return a structure content item from the 522
registry. The request below is an implicit XML structure based system that is keyed off 523
the base ebXML classification structures within the ebXML Registry. Since an ebXML 524
Registry is not an arbitrary collection of unordered information, but instead is a focused 525
set of related content the request can utilize basic primitive aspects of the ebXML 526
Registry to enable the request interface system. 527

SEARCH / HTTP/1.1 528
Content-Type: text/xml 529
Connection: Close 530
Content-Length: 632 531
 532
<?xml version="1.0" ?> 533
 <!-- ebXML Registry Structure Request V0.1 --> 534
 <D:searchrequest xmlns:D="DAV:" xmlns:eb="ebXML:"> 535
 <eb:request> 536
 <eb:access> 537
 <eb:channel>anonymous</eb:channel> 538
 <eb:auth user="klaus" password="76778jjk" /> 539
 </eb:access> 540
 <eb:input> 541
 <eb:match> 542
 <eb:item name="domain" value="GCI"/> 543
 <eb:item name="qic" value="GCI07090"/> 544
 </eb:match> 545
 <eb:select> 546
 <eb:version>00</eb:version> 547
 <eb:content>structure</eb:content> 548
 <eb:parent>root</eb:parent> 549
 </eb:select> 550
 <eb:operation> 551
 <eb:pageSize>10</eb:pageSize> 552
 <eb:hitCount>1</eb:hitCount> 553
 </eb:operation> 554
 </eb:input> 555
 <eb:output type="content" /> 556
 </eb:request> 557
</D:searchrequest> 558

RegRep Classification /Interfacing version 0.1
 Page 20

Reviewing the request structure above the <eb:match> block contains references to 559
domain and qic items that are part of the ebXML GUIDE classification scheme so 560
therefore these are known structural elements that can be searched on. In fact any 561
element within the registry can be searched on in context using this technique. DASL 562
also provides the means to specify selection operatives such as <or> and <and> to adjust 563
the search behaviour. By default a <eb:match> block is an implicit logical and of all 564
items specified. This behaviour will accommodate most common requests to the 565
Registry. 566

In the <eb:select> block a request for version ‘00’ will return the latest version available, 567
and the content and parent elements indicate that we require the complete structure of the 568
matching XML content. The <eb:operation> block controls the behaviour of the search 569
process itself. Again DASL provides these mechanisms to control the operation of the 570
search system. 571

Then the <eb:output> block controls how the output is returned to the invoking system. 572
The “content” parameter causes the default behaviour of returning the physical content, 573
the other option is to return a URL pointer structure that can be used to reference the 574
physical content itself. 575

576

RegRep Classification /Interfacing version 0.1
 Page 21

Example 2 ebXML Registry DASL response structure 576

The corresponding response mechanism is now shown for the request query in Example 1 577
above. 578

HTTP/1.1 207 Multi-Status 579
Content-Type: text/xml 580
Content-Length: 2032 581
 582
<?xml version="1.0" ?> 583
 <D:multistatus xmlns:D="DAV:" xmlns:eb="ebXML" 584
xmlns:R="http://www.ebxml.org/dasl-resp-schema"> 585
<D:response> 586
<D:href /> 587
<D:propstat> 588
<D:prop> 589
 <R:author>Ravi Kraft</R:author> 590
 <R:title>Catalogue Manifest</R:title> 591
 <R:synopsis>Vendor Catalogue Inventory Details</R:synopsis> 592
 <R:last-modified>1999-12-25T112222PST</R:last-modified> 593
 <R:size unit="kilobytes">3</R:size> 594
 <R:extra-info /> 595
 <R:external-doc-id /> 596
 <R:doc-id>11227726625</R:doc-id> 597
 </D:prop> 598
 </D:propstat> 599
 <eb:structure> 600
<![CDATA[601
<!-- Main definition of CatXML content schema V 1.1 --> 602
<!ELEMENT Input (Schema , Content)> 603
<!ELEMENT Schema (#PCDATA)> 604
<!ELEMENT Content (Vendor? , Supplier? , StockInfo? , ShipInfo? , Item 605
)> 606
<!-- Establish link to qic reference location --> 607
<!ATTLIST Content 608
 qicref CDATA #FIXED "http://www.catxml.org/qic/datatypes.xml" > 609
 610
<!ELEMENT Vendor (CompanyID , Name? , Address? , Contact?)> 611
<!ATTLIST Vendor 612
 vendorID ID #IMPLIED > 613
<!ELEMENT CompanyID (#PCDATA)> 614
<!ATTLIST CompanyID 615
 context (Vendor|Supplier|Manufacturer|Other) 'Vendor' 616
 idType (DUNS|Local|USDoD|EIN|TaxID|Other) 'DUNS' > 617
<!ELEMENT Name (#PCDATA)> 618
<!ENTITY % addressInfo SYSTEM "CatXML-address-V1.dtd" > 619
<!ENTITY % contactInfo SYSTEM "CatXML-contact-V1.dtd" > 620
<!ENTITY % shippingInfo SYSTEM "CatXML-shipping-V1.dtd" > 621
<!ENTITY % usgovDoDInfo SYSTEM "CatXML-usgovDoD-V1.dtd" > 622
<!ENTITY % stockInfo SYSTEM "CatXML-warehouse-V1.dtd" > 623
 624
 %addressInfo; 625
 %contactInfo; 626

RegRep Classification /Interfacing version 0.1
 Page 22

 %shippingInfo; 627
 %usgovDoDInfo; 628
 %stockInfo; 629
]]> 630
 </eb:structure> 631
 </D:response> 632
</D:multistatus> 633

The next example shows a return of a link reference to repository content rather than the 634
physical content itself. 635

 636

Example 3 ebXML Registry DASL response structure 637

The corresponding response mechanism is now shown for the request query in Example 1 638
above where the <eb:output> block request is changed to specify a URL instead of the 639
content itself. 640

HTTP/1.1 207 Multi-Status 641
Content-Type: text/xml 642
Content-Length: 763 643
 644
<?xml version="1.0" ?> 645
<D:multistatus xmlns:D="DAV:" xmlns:eb="ebXML" 646
xmlns:R="http://www.ebxml.org/dasl-resp-schema"> 647
 <D:response> 648
 <D:href>http://www.GCI.org/ebXML/catalogue.xml</D:href> 649
 <D:propstat> 650
 <D:prop> 651
 <R:author>Duane Nickull</R:author> 652
 <R:title>Catalogue Manifest</R:title> 653
 <R:synopsis>Vendor Catalogue Inventory Details</R:synopsis> 654
 <R:last-modified>1999-12-25T112222PST</R:last-modified> 655
 <R:size unit="kilobytes">12</R:size> 656
 <R:extra-info /> 657
 <R:external-doc-id /> 658
 <R:doc-id>11227726625</R:doc-id> 659
 </D:prop> 660
 </D:propstat> 661
 </D:response> 662
 </D:multistatus> 663

The next example illustrates a change request interchange. 664

665

RegRep Classification /Interfacing version 0.1
 Page 23

Example 4 ebXML Registry DASL change request structure 665

TBD 666

667

RegRep Classification /Interfacing version 0.1
 Page 24

3.4 The ebXML RegRep linking 667

The linking mechanism used in ebXML RegRep is based on either htttp URL links or 668
XML namespaces. The reserved word eb namespace declared in the root tag of the XML 669
transaction instance establishes the reference to the next ebXML RegRep content layer as 670
needed. Therefore a XML transaction will use the eb namespace to reference the 671
structure schema that defines the structural rules, and the eb structure will in turn use its 672
own element namespace to locate the default element definitions associated with the 673
structure. The element definitions can also optionally access the datatypes namespace to 674
locate datatyping information. This provides an extensible datatype model. 675

However, fragments that are themselves included, may not have further include 676
references within them, thus ensuring that only one level of nesting is provided. 677
Furthermore, permitting only the single ebXML namespace with a single control 678
structure ensures that the true structure of transactions is available and exposed. This 679
contrasts with other early schema implementations that used in-line namespace 680
definitions to retrieve multiple structure schemas, thus creating a system where the true 681
transaction structure could not be determined. The ebXML RegRep avoids this by only 682
allowing the single guide namespace for including the structure linkage. 683

This linkage mechanism is designed to be simple and business functional and to avoid 684
any complex constructs that make registry implementation and behaviour complex or 685
uncertain. This necessarily restricts the complex use of cascading links, and in 686
particularly linking can only be nested one layer deep, and all recursive references are 687
explicitly not provided. 688

3.5 Type systems 689

The ebXML RegRep element definitions use basic business datatypes. All of these are 690
supported by the current W3C datatyping proposal, however the W3C has extended 691
complex behaviours in their datatyping. Any item that does not have a datatype 692
explicitly assigned is treated as a simple string by default. 693

3.6 Relationship of and use of Bizcodes 694

The Qualified Indicator Code (QIC) is tied into the Bizcode mechanism that provides the 695
linkage between ebXML classification structures and the associated element definitions 696
and is designed to be a neutral reference code. Use of neutral reference codes is already 697
an established practice within dictionaries of industry element definitions. Therefore 698
many industries already have codes that they can use as QIC references. 699

The preferred Bizcode QIC structure is a three-letter code, followed by a five-digit 700
number, where the three-letter code denotes the industry or group assigning the codes, 701
and the five-digit number is a sequentially assigned value. It is anticipated that as part of 702
the ebXML repository technical specifications there will also be guidelines established 703

RegRep Classification /Interfacing version 0.1
 Page 25

for managing globally unique names under which Bizcode QIC references can be 704
classified. 705

Currently the barcodes used for product labelling are managed in a similar fashion by 706
having formally registered barcodes alongside locally defined barcodes. With Bizcode 707
QIC labels, since they are tightly coupled to an ebXML classification structure and also 708
stored within an ebXML element repository this already provides excellent separation to 709
avoid conflicts on QIC values assigned within an industry. Also, unlike barcodes where 710
there are many tens of millions already assigned, Bizcodes required a much more limited 711
number since they are reusable across many products. An example is the food industry 712
where there are over seven million barcodes in use, but less than ten thousand unique 713
element definitions (product attributes) are being used to describe all those products. 714

The current ebXML GUIDE element classification structure is designed to be compatible 715
with ISO11179 based reference registries. The role of ISO11179 registries is to 716
harmonize information classification within a corporation or large government agency for 717
human analytical and business system design purposes. The role of ebXML repositories 718
extends beyond that to include XML based machine-to-machine information interchanges 719
that reference XML repositories via an XML based API and interface specifications. 720

Therefore ebXML GUIDE classification can be used in tandem with ISO11179, where 721
the ISO registry manages the content that the ebXML system exposes to ebXML aware 722
systems. 723

724

RegRep Classification /Interfacing version 0.1
 Page 26

 724

4. Tutorial and Use Case 725

This section presents a short example by the way of an illustration of how to work 726
with and prepare an ebXML RegRep transaction. This section should reference the 727
Tokyo POC implementation documentation. 728

5. Addendum 729

A 1. References 730

W3C Working Draft "XML Schema Part 1: Structures". This is work in progress. 731

W3C Working Draft "XML Schema Part 2: Datatypes". This is work in progress. 732

A 1.1 Notes on URI, XML namespaces & schema locations 733

Namespace use to be defined with regard to the W3C namespace recommendation. 734

A 1.2 Relative URIs 735

Throughout this document you see fully qualified URIs used as references. The use of a 736
fully qualified URI is simply to illustrate the referencing concepts. 737

 738

