
1. Overview 1

This note describes an approach to Registry ad hoc query support by providing a 2
XML container based API. It attempts to meld together the discussions this week 3
and provide a mutually acceptable framework to resolve the outstanding query 4
implementation issues. 5
 6

2 Definitions 7

This section defines some terminology that will be used in subsequent sections. 8
 9

2.2 Focused Query 10

A focused query is one where the query interface is fixed to do a specific query 11
task. A focused query approach pre-supposes what the client would wish to 12
search for. Focused queries are defined statically by the Registry interface. 13
Focused queries are analogous to calling statically defined methods that have a 14
fixed signature. The current “browse and drill down” queries of the Registry are 15
examples of focused queries. 16

2.3 Ad hoc Query API Components 17

The API seeks to extend the fixed focus query model and provide additional 18
methods. As such it is not a generalized ad hoc query system nor a limited sub-19
set of some selected query syntax. Rather it provides a mechanism whereby 20
Registry can offer extensible querying facilities based on business use case 21
requirements. 22
 23
These additional methods will be classified within the registry and therefore 24
accessible via drill down access themselves. The focused query set therefore 25
provides bootstrapping for registry ad hoc querying. This allows external users to 26
discover exactly what ad hoc querying any given registry provides. To further 27
support this, the ad hoc query API prescribes three categories of methods, 28
required, preferred, and specific. 29
 30
Required offer a suite of tools that the registry team has determined are logical a 31
priori methods that will facilitate a broad range of business functional queries 32
based on the RIM. They are closely analogous to the existing focused query 33
model. They also serve to provide reference models for retrieving content based 34
on the RIM to help guide implementers. These ad hoc methods differ from the 35
focused query in that they seek to provide a single consist method metaphor and 36
XML based implementation. While at the same time offering a more open value 37
model typical of ad hoc querying, where the exact query content is provided by a 38
XML structure (similar to that provided by the API of UDDI methods). 39
 40

By contrast the focused query set is literally that, a set of interdependent 41
methods. Ad hoc queries conversely can be used standalone, or in tandem with 42
focused queries. 43
 44
Preferred ad hoc queries are ones that are not critical to providing a functioning 45
Registry implementation, and / or rely on technology specific techniques that not 46
all Registry implementations may need or be capable of implementing. They 47
have been determined to be broadly useful by the Registry team. Specific ad 48
hoc queries are ones that local implementers have developed generic to a 49
particular industry business need. An industry group would expect registries 50
within that industry to support these. Conformance testing and industry 51
certification can therefore be developed around the ad hoc API support model. 52
 53

3 Long term strategy 54

The ad hoc API mechanism is designed to provide an initial acceptable system 55
that can be widely implemented quickly and consistently. However the registry 56
team is aware of the potential for an exponential explosion in ad hoc query 57
methods, particularly in the specific category. 58
 59
The overall problem appears to be somewhat intractable, since an open ad hoc 60
query language is a holy grail not yet invented. Issues of security, behaviour and 61
implementation consistency are apparent. Constrained subsets are a partial 62
answer, but again there are major issues on what to constrain and how that 63
affects implementation details and approaches. 64
 65
Further complicating the issue is the fact that given the ebXML focus on XML, 66
that an XML-centric query syntax would appear to be a natural preference. 67
However XML query syntax is still an emerging technology that the W3C is yet to 68
fully define. 69
 70
From the business functional perspective the problem may not be as difficult as 71
first appears. End users can be expected to require similar and related needs, 72
and a constrained API can provide that. Certainly in a first phase, it is also 73
appropriate to limit the functionality, to be more cautious, and so as to ensure a 74
robust version 1.0 implementation. Also, this enables feedback from 75
implementers and users to establish a true level of needed features over 76
presumed features. Historically also, database access services have been 77
provided restricted access, not open ad hoc querying externally. 78
 79
Typical Registry query requirements search for content based on metadata 80
submitted on the content as defined by Registry Information Model [RIM]. A 81
query mechanism that supports the ability to search for content based on data 82
that is part of submitted content is referred to as supporting content-based 83
queries. Note that content-based queries are very similar in nature to totally ad 84

hoc queries. It should be noted that the information model fixes the Registry 85
schema. As such totally ad hoc queries are not required for the registry. 86
 87
Notice also, that the true issue is between registries. Locally a registry can 88
implement its own ad hoc query interface to answer curious humans who wish to 89
augment their searching experience. However the crux of the ad hoc API effects 90
automated application-to-application (A2A) interactions to the registry, or multiple 91
registries. These A2A queries are structured and driven by the actual schema 92
semantics underpinning business processes. Given this constraint fixed queries 93
make much more sense. An example would be a request for CPP information 94
from an ebXML TRP layer that can be provided for neatly by providing structured 95
methods that exactly match those requirements. Such requests are not subject 96
to exponential explosions of complexity. 97
 98
The ad hoc API approach therefore takes a sensible implementation strategy 99
today that is historically a best choice, while providing for migration to a more 100
extensive model in the future. 101
 102

4 Implementation Details 103

 104
This section presents details of the ad hoc API implementation. 105
 106

4.1 Drill down discovery of Methods 107

 108
The existing Registry drill down mechanisms will be used to implement this. 109
The classification XML for this is: 110
 111
<adhocAPImethods> 112
 <required> 113
 <method name=”xxxxx” uri=”/yyyy/zzzz”/> 114
 </required> 115
 <preferred> 116
 <method name=”aaaaa” uri=”/bbbb/cccc”/> 117
 </preferred> 118
 <specific> 119
 <method name=”iiiiii” domain=”industryname” uri=”/jjjjj/kkkk”/> 120
 </specific> 121
</adhocAPImethods> 122
 123
 124

125

4.2 Mapping API Methods to RIM 125

 126
The existing RIM defines a set of methods required to provide basic accessing of 127
core information within the Registry itself. Each one of these will be provided 128
with a method designation to allow provision of an ad hoc API method. 129
Note that the AdHocQueryResponse will include a ManagedObjectList that will 130
include heterogeneous elements (e.g. ExtrinsicObjects, Classification etc.) 131
representing the classes specified in [RIM]. 132
 133
A non-exhaustive list includes the following required methods. 134
 135
Simple Meta Data Based Queries 136
The simplest form of ad hoc queries is based upon metadata attributes specified 137
for Registry content as specified in [RIM]. This form requires two parameters, an 138
element name from the RIM, and a selection value to match. Variants can 139
provide different matching criteria methods such as: 140
 141
findMetadataItem.all () 142
findMetadataItem.first() 143
findMetadataItem.all.containing() 144
findMetadataItem.all.containing.ignorecase() 145
 146
Classification Queries 147
 148
This section describes the various classification related queries that must be 149
supported. 150
 151
findClassificationItem.all () 152
findClassificationItem.first() 153
 154
Getting Objects Classified By a ClassificationNode 155
 156
To get the collection of Objects classified by specified ClassificationNodes. 157
 158
Getting ClassificationNodes That Classify an Object 159
 160
To get the collection of Classification Nodes that classifies a specified Object. 161
 162
Getting Root Classification Nodes 163
 164
To get the collection of root Classification Nodes. 165
 166
 167
 168
 169

Getting Children of Specified Classification Node 170
 171
To get the children of a specific Classification Node, given the ID reference to 172
that node. 173
 174
Getting Objects Classified By a Classification Node 175
To get the collection of Objects classified by specified Classification Nodes. Note 176
that the query will also contain any objects that are classified by descendents of 177
the specified Classification Nodes. 178
 179
Association Queries 180
 181
This section describes the various Association related queries. 182
 183
Getting All Association Related to a Specified Object 184
 185
To get the collection of Associations that has the specified Object as its source. 186
 187
Getting Associations Based On Name, Role, Type 188
 189
To get the collection of Associations that have specified Association attributes. 190
 191
Getting Associated Objects Based On Association Attributes 192
 193
To get the collection of Extrinsic Objects that are associated with a specified 194
object, and based on an Association which is specified. 195
 196
Package Queries 197
 198
To find all packages that a specified object belongs to. 199
 200
External Link Queries 201
 202
These queries will find all External Links that a specified object is linked to. 203
 204
Mapping of Predicates Involving Primitive Attributes 205
 206
Most of the RIM interfaces methods are simple get/set methods that map directly 207
to primitive attributes. For example the getName() and setName() methods on 208
Object map to a name attribute of type String. 209
 210
Mapping of Predicates Involving References 211
 212
A few of the RIM interface methods return references to objects (e.g. 213
Object#getAccessControlPolicy()). In such cases the references map to the ID 214
attribute for the referenced object. This is again a special case of a primitive 215

attribute mapping. In this case the ID attribute is used as a reference pointer to 216
the actual content item. 217
 218
In summarizing the above methods, we can group them based on related RIM 219
components. 220
 221

RIM Procedures 222

 223
Classification Related 224
- findClassifiedObjects 225
- findClassificationTree 226
- findRootClassificationNode 227
 228
Association Related 229
- findAssociatedObjects 230
- findObjectsByExternalLink 231
 232
Content Directed 233

- findObjectByName 234
- findObjectByContextPath 235
- findObjectByReferenceID 236
- findObjectByContent 237

 238
Package Accessing 239
- findObjectsByPackage 240
 241
Registry Deployment Support 242
- findRegistryFunctions 243
- findRegistryTRP 244
 245

Business Based Functions 246

 247
- findSupplierCPP 248
- findObjectsByOrganization 249
- findObjectsByIndustryClassification 250
 251
The next section provides the actual XML to implement the above API methods 252
with. 253
 254

255

4.3 API structure for Methods 255

 256
The objective is to provide a consistent XML API container that will always be 257
interchanged between an application and a registry to perform the required ad 258
hoc query request. 259
 260
The container consists of the following structural components. 261
 262
a) A binding for an optional registry object reference set that is to be provided 263
(UDDI refers to this as a tModelBag). 264
 265
b) A query method section that details the actual method to be invoked and the 266
findQualifiers to be associated with the method. 267
 268
c) An interchange control section that details how the method will interact and the 269
response returned. 270
 271
Therefore the actual XML structure for this is shown below. 272
 273

Example 1. 274

 275
<ebXMLadhocQuery> 276
 <requestItemBinding><RegistryItem/></requestItemBinding> 277
 278
 <querySection method=”findObjectByContextPath”> 279
 <findQualifiers> 280
 <findQualifier>XMLstructure</findQualifier> 281
 <findQualifier>\root\some\items\content\</findQualifier> 282
 <findQualifier>parent</findQualifier> 283
 </findQualifiers> 284
 </querySection> 285
 286
 <interactionControl action="returnURI" maxRows="all" then="return" /> 287
 288
</ebXMLadhocQuery> 289

290

 290

Example 2. 291

 292
<ebXMLadhocQuery> 293
 <requestItemBinding/> 294
 295
 <querySection method=”findObjectByName.contains.ignorecase”> 296
 <findQualifiers> 297
 <findQualifier>unitPrice</findQualifier> 298
 </findQualifiers> 299
 </querySection> 300
 301
 <interactionControl action="returnGUID" maxRows="all" then="return"/> 302
 303
</ebXMLadhocQuery> 304
 305

Argument Definitions 306
 307
• requestItemBinding: The registry object model contains specific reference 308
elements and attributes that can be associated with a “fingerprint” of values for a 309
particular reference item. A method may optionally require these in order to 310
continue from a previously invoked query result set. 311
 312
• findQualifiers: The collection of findQualifier elements can be used to alter the 313
default behavior of the query method. (A value of %continues% indicates a 314
cascading method call – see ‘then’ argument below). 315
 316
• maxRows: This is an optional integer value, or the string “all”; allows the 317
requesting program to limit the number of results returned. 318
 319
• action: Specifies the mode that the method will use to return content to the 320
calling program. Allowed modes are: returnURI | returnContent | returnGUID | 321
returnObject | returnRAW. 322
 323
• then: This is explicit control indicator. “Return” indicates that control will return 324
immediately on completion of the method back to the caller. “Continue” indicates 325
that the result set from this method be passed to the subsequent 326
ebXMLadhocQuery as the findQualifiers block. This is useful to allow multiple 327
related method calls to be passed at one time. 328
 329
 330

331

Returns: 331
 332
The invoked method returns an XML result set on success. In the event that no 333
matches were located for the specified criteria, the result set structure returned in 334
the response the will be empty. In the event of a large number of matches, an 335
Operator Site may truncate the result set. If this occurs, the response message 336
will contain the truncated attribute with the value of this attribute set to true. 337
 338

Caveats: 339

If any error occurs in processing this request, an ebXML error structure will be 340
returned to the caller. The following error number information will be relevant: 341
 342
Error_invalidKeyPassed: signifies that the GUID_key value passed did not 343
match with any known key or key values. The error structure will signify which 344
condition occurred first. 345
 346
� Error_tooManyOptions: signifies that more than one mutually exclusive 347
argument was passed. 348
 349
� Error_unsupported: signifies that one of the findQualifier values passed was 350
invalid. 351
 352

