


Excerpted from the Glossary of:





OMG Unified Modeling Language Specification Version 1.3 March 2000


Copyright © 2000, Object Management Group (and others...)











Notation Conventions





The entries in the glossary usually begin with a lowercase letter. An initial uppercase


letter is used when a word is usually capitalized in standard practice. Acronyms are all


capitalized, unless they traditionally appear in all lowercase.





When one or more words in a multi-word term is enclosed in brackets, it indicates that


those words are optional when referring to the term. For example, use case [class] may


be referred to as simply use case.





The following conventions are used in this glossary:


• Contrast: <term>


Refers to a term that has an opposed or substantively different meaning.





• See: <term>


Refers to a related term that has a similar, but not synonymous meaning.





• Synonym: <term>


Indicates that the term has the same meaning as another term, which is referenced.





• Acronym: <term>


Indicates that the term is an acronym. The reader is usually referred to the spelled-out


term for the definition, unless the spelled-out term is rarely used.











Glossary terms:





aggregate [class] A class that represents the “whole” in an aggregation


(whole-part) relationship. See: aggregation.





aggregation A special form of association that specifies a whole-part


relationship between the aggregate (whole) and a


component part. See: composition.





association The semantic relationship between two or more


classifiers that specifies connections among their


instances.





association class A model element that has both association and class


properties. An association class can be seen as an


association that also has class properties, or as a class


that also has association properties.





association end The endpoint of an association, which connects the


association to a classifier.





attribute A feature within a classifier that describes a range of


values that instances of the classifier may hold.





cardinality The number of elements in a set. Contrast:


multiplicity.





class A description of a set of objects that share the same


attributes, operations, methods, relationships, and


semantics. A class may use a set of interfaces to


specify collections of operations it provides to its


environment. See: interface.





classifier A mechanism that describes behavioral and structural


features. Classifiers include interfaces, classes,


datatypes, and components.





class diagram A diagram that shows a collection of declarative


(static) model elements, such as classes, types, and


their contents and relationships.





composite [class] A class that is related to one or more classes by a


composition relationship. See: composition.





composite aggregation


Synonym: composition.





composition A form of aggregation association with strong


ownership and coincident lifetime as part of the


whole. Parts with non-fixed multiplicity may be


created after the composite itself, but once created


they live and die with it (i.e., they share lifetimes).


Such parts can also be explicitly removed before the


death of the composite. Composition may be


recursive. Synonym: composite aggregation.





dependency A relationship between two modeling elements, in


which a change to one modeling element (the


independent element) will affect the other modeling


element (the dependent element).





diagram A graphical presentation of a collection of model


elements, most often rendered as a connected graph of


arcs (relationships) and vertices (other model


elements). UML supports the following diagrams:


class diagram, object diagram, use case diagram,


sequence diagram, collaboration diagram, state


diagram, activity diagram, component diagram, and


deployment diagram.





generalization A taxonomic relationship between a more general


element and a more specific element. The more


specific element is fully consistent with the more


general element and contains additional information.


An instance of the more specific element may be used


where the more general element is allowed. See:


inheritance.





implementation A definition of how something is constructed or


computed. For example, a class is an implementation


of a type, a method is an implementation of an


operation.





implementation inheritance


The inheritance of the implementation of a more


specific element. Includes inheritance of the interface.


Contrast: interface inheritance.





inheritance The mechanism by which more specific elements


incorporate structure and behavior of more general


elements related by behavior. See generalization.





instance An entity to which a set of operations can be applied


and which has a state that stores the effects of the


operations. See: object.





interface A named set of operations that characterize the


behavior of an element.





interface inheritance The inheritance of the interface of a more specific


element. Does not include inheritance of the


implementation. Contrast: implementation


inheritance.





message A specification of the conveyance of information from


one instance to another, with the expectation that


activity will ensue. A message may specify the raising


of a signal or the call of an operation.





metaclass A class whose instances are classes. Metaclasses are


typically used to construct metamodels.





meta-metamodel A model that defines the language for expressing a


metamodel. The relationship between a meta-metamodel


and a metamodel is analogous to the


relationship between a metamodel and a model.





metamodel A model that defines the language for expressing a


model.


metaobject A generic term for all metaentities in a metamodeling


language. For example, metatypes, metaclasses,


metaattributes, and metaassociations.





method The implementation of an operation. It specifies the


algorithm or procedure associated with an operation.





model


An abstraction of a physical system, with a certain


purpose.. See: physical system.





multiplicity A specification of the range of allowable cardinalities


that a set may assume. Multiplicity specifications may


be given for roles within associations, parts within


composites, repetitions, and other purposes.


Essentially a multiplicity is a (possibly infinite) subset


of the non-negative integers. Contrast: cardinality.





object An entity with a well-defined boundary and identity


that encapsulates state and behavior. State is


represented by attributes and relationships, behavior is


represented by operations, methods, and state


machines. An object is an instance of a class. See:


class, instance.





object diagram A diagram that encompasses objects and their


relationships at a point in time. An object diagram


may be considered a special case of a class diagram


or a collaboration diagram. See: class diagram,


collaboration diagram.





sequence diagram A diagram that shows object interactions arranged in


time sequence. In particular, it shows the objects


participating in the interaction and the sequence of


messages exchanged. Unlike a collaboration diagram,


a sequence diagram includes time sequences but does


not include object relationships. A sequence diagram


can exist in a generic form (describes all possible


scenarios) and in an instance form (describes one


actual scenario). Sequence diagrams and collaboration


diagrams express similar information, but show it in


different ways. See: collaboration diagram.





use case [class] The specification of a sequence of actions, including


variants, that a system (or other entity) can perform,


interacting with actors of the system. See: use case


instances.





use case diagram A diagram that shows the relationships among actors


and use cases within a system.





use case instance The performance of a sequence of actions being


specified in a use case. An instance of a use case. See:


use case class.





use case model A model that describes a system’s functional


requirements in terms of use cases.








