
1 Overview 1

This note describes the thought process the registry team has been through on 2
the subject of ad hoc query support. It discusses the alternatives that have been 3
considered and finally makes a recommendation to the team on how to support 4
ad hoc queries in the registry. 5

1.1 Definitions 6

This section defines some terminology that will be used in subsequent section. 7

1.2 Focused Query 8

A focused query is one where the query interface is fixed to do a specific query 9
task. A focused query approach pre-supposes what the client would wish to wish 10
to search for. Focused queries are defined statically by the Registry interface. 11
Focused queries are analogous to calling statically defined methods that have a 12
fixed signature. 13

The current “browse and drill down” queries of the Registry are examples of 14
focused queries. The UDDI find_business_by_name query is another example of 15
a focused query. 16

1.3 Totally Ad Hoc Query 17

An totally ad hoc query is a completely open ended query where no a priori 18
knowledge exists on what the client would wish to search for nor is there any 19
prior knowledge about the schema or information model upon which the queries 20
would be based. Totally ad hoc queries allow for complex queries to be 21
composed of simpler predicates based logical operations (e.g. AND, OR, NOT) 22
and allow for comparison operations (e.g. >, <, = etc.) as well as string pattern 23
matching. Totally ad hoc queries also allow for unrestricted joins across different 24
schema types. Totally ad hoc queries have the potential for excessive utilization 25
of system resources. 26

SQL queries in relational databases, XPATH and XML Queries on XML content 27
are examples of totally ad hoc queries. 28

1.4 Constrained Ad Hoc Query 1

A constrained ad hoc query is somewhere in between focused query and totally 2
ad hoc query. Constrained ad hoc queries operate against a fixed schema that is 3
known a priori. They are similar to focused queries in the sense that they only 4
allow certain allowed predicates. They are similar to totally ad hoc queries in the 5
sense that they allow for complex queries to be composed of simpler predicates 6
based logical operations and allow for comparison operations. Constrained ad 7
hoc queries also allow for restricted joins across different schema types. 8

1.5 Content Based Queries 9

Typical Registry query requirements search for content based on metadata 10
submitted on the content as defined by Registry Information Model [RIM]. 11

A query mechanism that supports the ability to search for content based on data 12
that is part of submitted content is referred to as supporting content-based 13
queries. 14

Note that Content Based Queries are very similar in nature to totally ad hoc 15
queries. 16

2 Registry Query Requirements 17

The Registry schema is fixed by the information model. As such totally ad hoc 18
queries are not required for the registry. That leaves us with having to choose 19
between constrained ad hoc queries (hitherto referred as ad hoc queries) or 20
focused queries. 21

The following sections describe various requirements that have been considered. 22
Each is rated with its relative importance based on a High, Medium, Low scale. 23

2.1 Ease of Use By Clients (High) 24

The single most important requirement for query support for the registry IMHO is 25
that the query interface must be simple to use from the perspective of Registry 26
clients. This is based on the fact that there are many more registry clients than 27
there are registry services. 28

2.2 Support For Constrained Ad Hoc Query (High) 29

Recall that the analysis left us with having to choose between Constrained Ad 30
Hoc Query and focused queries. Focused queries have the following problems: 31

1. They pre-suppose what the client will wish to query since they do not have 32
the ability to build complex queries from simpler predicates. 33

2. They are a maintenance headache since the Registry must support a 1
separate interface for each supported query 2

3. They are not easy to use because the client has to remember separate 3
query syntaxes for each query. 4

Based on the reasons above, a constrained ad hoc query is recommended as a 5
requirement for Registry query interface. 6

2.3 Content Based Query Support (High) 7

IMHO, the query mechanism must also allow for the ability to search for content 8
based on data that is present in the content itself. Content-based query 9
requirement does not imply a specific approach. It is simply stating that it is a 10
valid use case regardless of how we choose to support it. Consider the need to 11
search for all Capps that include “Seller” as a specified role. This use case is 12
fairly common and was part of the Tokyo POC scenario. Other use cases of 13
content-based queries abound. 14

2.4 Based on Existing or Emerging Standards (High) 15

It is desirable to have the query interface be based upon an existing or emerging 16
standard for obvious reasons. 17

2.5 Ease of Acceptance by ebXML Membership (High) 18

This requirement is pragmatic and not technical. We need to choose a query 19
interface that will meet the most important requirements and still be palatable to 20
the membership of ebXML. 21

2.6 Flexibility of Implementation In Registry (High) 22

It is important that whatever query interface we define, it allows Registry 23
implementers to implement the Registry in any technology they see fit (e.g. 24
relational database, object database, LDAP, flat files etc.) 25

2.7 Ease of Implementation In Registry (Medium) 26

IMHO, ease of implementation by clients is the highest requirement. However, it 27
is also important to make sure that whatever query interface we define, it does 28
not place an excessive burden on Registry implementers. IMHO, it is OK for us to 29
accept some complexity (within reason) in Registry implementation vs. improved 30
ease of use by the clients. 31

3 Alternatives For Constrained Ad Hoc Query Interface 1

Based on the rationale given above, IMHO we need to agree on a suitable 2
constrained ad hoc query mechanism. The following candidate choices have 3
been considered: 4

3.1 Constrained Sub-set of an Existing Query Language 5

In this approach we leverage an existing query language standard or emerging 6
standard to describe the query. Alternatives considered have been a constrained 7
sub-set of OQL and a constrained sub-set of XPATH. In either case the client 8
would specify the query as a string attribute named queryString in a 9
SubmitAdhocQueryRequest XML message to the Registry. The Registry must be 10
able to process the query string and map it to an equivalent query in its 11
underlying implementation (e.g. SQL for relational databases). This requires 12
limited ability to parse and recognize predicates that match pre-defined predicate 13
patters in the Registry Services [RS] document. This does not require having to 14
implement a full-blown OQL or XPATH processor since it does not need to work 15
for any query but only queries whose predicates match certain specified patterns. 16
IMHO, in the scheme of things this is of moderate complexity with constrained 17
OQL being easier to process than constrained XPATH. 18

As an aside it should be noted that XML Query was considered but discarded 19
based on our requirements and the fact that it is not yet a 20

This is the alternative that has been discussed most in Registry group and the 21
recent face to face meeting where an entire day was spent considering XPATH 22
alternative and experts such as Mike Rowley were invited to guide us. 23

3.2 Simple XML Schema To Express Queries (Custom Query Syntax) 24

In this approach (referred to as custom query syntax) we specify an XML schema 25
in the [RS] that is capable of representing the constrained ad hoc query in form of 26
an XML document. This is essentially what NIST and OASIS have done in their 27
Registry. 28

Regardless of the specific XML schema we choose in this approach, it has the 29
perceived benefit of being simple to implement by registry implementers. It has 30
the disadvantage that the query syntax is not as simple and familiar for Registry 31
clients. It is also proprietary and not based on any standard. Query interfaces are 32
non-trivial to design and get right. It is a very big wheel to re-invent even if we 33
constrain it. I am speaking here from past experience. 34

Based on responses on the Registry mailing list this option has the most vocal 35
support. 36

4 Recommendation 1

[Note] Note that this is my personal recommendation 2
and reconstruction of the thought process we 3
have followed. It is humbly submitted as an 4
individual. Sun has no articulated or hidden 5
agenda or position on this topic (or any other 6
Registry related topic) other than that we 7
should reach a decision on this subject as a 8
team following due process. 9

I believe the most important thing is to have Registry support for constrained ad 10
hoc queries based on an interface that is simple to use by Registry clients. 11

4.1 Transition From OQL To XPATH 12

Until day one of the face-to-face I believed that constrained OQL was the best 13
alternative. I had considered XPATH but found it to be less simple from a client’s 14
perspective and also likely to force a Registry implementation where metadata 15
was stored as XML content rather than a relational database. However, being 16
sincere in my desire to explore all reasonable alternatives, I invited several 17
experts on XPATH and XML Query to day 1 of the face-to-face. We spent an 18
entire day on exploring XPATH. 19

At first it seemed that XPATH would not be able to deal with our most complex 20
queries (classification queries). Mike Rowley then came up with a breakthrough 21
that alleviated my concerns regarding XPATH alternative. The idea was to design 22
a virtual document schema mapping from [RIM] that would be more suitable for 23
simple XPATH queries. I liked the idea from that point since XPATH syntax also 24
allowed for content-based queries. However, there were the following concerns: 25

1. Can a constrained XPATH express all our pre-defined query predicates? 26

2. Can a constrained XPATH be mapped to a relational query relatively 27
easily? 28

I spent the weekend exploring the first issue and posted the results to the list. 29
They were encouraging in that XPATH seemed to have the expressive capability 30
to meet our query needs. I was planning on exploring the second issue early this 31
week and sharing the findings with the team. 32

4.2 Transition Back From XPATH To OQL 33

Two things happened that led my thinking away from XPATH and back to OQL 34
as the syntax for expressing constrained ad hoc queries. 35

4.2.1 XPATH Mapping To SQL Is Harder 1

As I began to think through the issue of mapping constrained XPATH queries to 2
a relational database it became apparent that this would be more difficult than 3
mapping OQL queries to SQL (the latter is a relatively simple Object-Relational 4
mapping that can be applied algorithmically). 5

4.2.2 Breakthrough On Content Based Queries 6

It occurred to me that the best way to deal with content-based queries is to use 7
the existing classification based queries along with an automatic indexing 8
capability. The idea is to define logical indexes as a binding between an element 9
or attribute in the document schema with a classification scheme when the 10
schema is submitted. Thenceforth, whenever a document instance for the 11
schema is submitted, it is automatically classified by the Registry. This approach 12
has the following advantages: 13

1. Utilizes existing classification scheme support that can be highly optimized 14
by Registry implementations 15

2. Does not require searching on document content in response to queries 16

3. May be applicable to non-XML content as long as Registry knows how to 17
process it at submission time 18

This breakthrough idea makes XPATH less interesting to me as a query 19
language syntax since we no longer need to search document instances in 20
response to queries. 21

4.3 What About Custom Query Syntax Idea? 22

I have already expressed the issues I see with this alternative. As always I will 23
demonstrate an open-minded approach to this alternative if the team feels this is 24
the approach we should pursue. If we decide to go this path as a team decision 25
then I will devote all my focus to this option. 26

BTW Mike Rowley and I spent a good amount of time today exploring this option. 27
The complexity of specifying an adequate XML syntax became apparent after 28
about an hour. We will continue to explore this option given the support it has 29
received on the mailing list. 30

5 Summary of My Position 31

I believe that a constrained OQL query syntax is our best alternative (See 32
Appendix A for examples). It meets most of the requirements we have identified: 33

1. It is trivial and familiar to use from a clients perspective. 34

2. It has strong expressive power to support constrained ad hoc queries 35

3. It is based on a dominant existing standard (SQL) and a not so dominant 1
yet existing standard (OQL) 2

4. It can be implemented with relatively moderate complexity. I have offered 3
to explore with Sun to donate such a query processor to implementers of 4
ebXML Registry. 5

5. It offers flexible choices to Registry implementers since they can use a 6
commercial relational or object database for storing metadata. 7

This approach may not meet the following requirements: 8

1. Ease of Acceptance by ebXML Membership 9

With my position and thought process on the table I invite your thoughts and 10
comments and commit to you that I will support whatever we as a team decide 11
on this and all other Registry issues. 12

Thanks for your consideration. 13

 14

Humbly submitted, 15

Farrukh Najmi 16

Appendix A Sample Constrained OQL Queries 17

Following is a cut-and-paste from earlier [RS] document. 18

5.1.1 Simple Meta Data Based Queries 19

The simples form of ad hoc queries are based upon metadata attributes specified 20
for Registry content as specified in [RIM]. This section gives some examples of 21
simple metadata based queries. The queries may use any accessor (get) method 22
specified for an interface in [RIM]. 23

For example, to get the collection of Objects that match a specified name and 24
have version greater than 1.3, the following query must be supported: 25

//Get Objects whose name includes the word bicycle 26

SELECT DISTINCT obj FROM Object WHERE 27

 obj.name LIKE ‘%bicycle%’ AND 28

 obj.majorVersion >= 1 AND obj.minorVersion >= 3; 29

Note that simple queries such as above where all predicates are based on 30
primitive attribute types may be passed to an SQL processor as is if the 31
implementation is SQL. 32

5.1.2 Classification Queries 1

This section describes the various classification related queries that must be 2
supported. 3

5.1.2.1 Getting Objects Classified By a ClassificationNode 4

To get the collection of Objects classified by specified ClassificationNodes the 5
following query must be supported: 6

SELECT DISTINCT obj FROM Object WHERE 7
 obj.isClassifiedBy(<classificationNode>); 8

For example to get the collection of Objects classified by “Automotive.Industry” 9
node and the “Geography.Asia.Japan” node the query would be: 10

 11

 SELECT DISTINCT eo FROM ExtrinsicObject WHERE12
 eo.isClassifiedBy(ClassificationNode(path: “Industry.Automotive”)) AND 13
 eo.isClassifiedBy(ClassificationNode(path: “Geography.Asia.Japan”)); 14

 15

Note that AdHocQueryResponse will include a ManagedObjectList which will 16
include heterogeneous elements (e.g. ExtrinsicObjects, Classification etc.) 17
representing the classes specified in [RIM]. 18

5.1.2.2 Getting ClassificationNodes That Classify an Object 19

To get the collection of ClassificationNodes that classify a specified Object the 20
following query must be supported: 21

 22

SELECT cn FROM ClassificationNode WHERE 23

 cn.classifies(<object’s id>); 24

5.1.3 Association Queries 25

This section describes the various Association related queries that must be 26
supported. 27

5.1.3.1 Getting All Association From Specified Object 28

To get the collection of Associations that have the specified Object as its source, 29
the following query must be supported: 30

 31

SELECT assoc FROM Association WHERE 32

 assoc.sourceObject = <uuid>; 33

5.1.3.2 Getting All Association To Specified Object 1

To get the collection of Associations that have the specified Object as its target, 2
the following query must be supported: 3

 4

SELECT DISTINCT assoc FROM Association WHERE 5

 assoc.targetObject = <uuid>; 6

5.1.3.3 Getting Associations Based On Name, Role, Type 7

To get the collection of Associations that have specified Association attributes, 8
the following queries must be supported: 9

The following query selects Associations that have the specified name: 10

SELECT DISTINCT assoc FROM Association WHERE 11

 assoc.name = <name>; 12

 13

The following query selects Associations that have the specified source role 14
name: 15

SELECT DISTINCT assoc FROM Association WHERE 16

 assoc.sourceRole = <roleName>; 17

 18

The following query selects Associations that have the specified target role 19
name: 20

SELECT DISTINCT assoc FROM Association WHERE 21

 assoc.targetRole = <roleName>; 22

 23

The following query selects Associations that have the specified association type, 24
where association type is a string containing the corresponding field name 25
described in [RIM]. 26

SELECT DISTINCT assoc FROM Association WHERE 27

 assoc.associationType = <associationType>; 28

5.1.3.4 Complex Association Queries 29

The various forms of association queries may be combined into complex 30
predicates. The following query selects Associations from object with uuid 31
sourceObj that have the sourceRole “buysFrom” and targetRole “sellsTo”: 32

 33

SELECT DISTINCT assoc FROM Association WHERE 34

 Assoc.sourceObject = “sourceObj” 1

 assoc.sourceRole = “buysFrom” AND 2

 assoc.sourceRole = “sellsTo”; 3

Note that simple queries such as above where all predicates are based on 4
primitive attribute types may be passed to an SQL processor as is if the 5
implementation is SQL. 6

5.1.4 Package Queries 7

To find all packages that a specified object belongs to, the following query is 8
specified: 9

SELECT DISTINCT pkg FROM Package WHERE 10

 pkg IN obj.getPackages(); 11

To find all objects in a specified package, the following query is specified: 12

SELECT DISTINCT obj FROM Object WHERE 13

 obj IN pkg.getMemberObjects(); 14

5.1.4.1 Complex Package Queries 15

The following query gets all packages that a specified object belongs to, that are 16
not deprecated and name contains RosettaNet. 17

SELECT DISTINCT pkg FROM Package WHERE 18

 pkg IN obj.getPackages() AND 19

 pkg.name LIKE ‘%RosettaNet%’ AND 20

 pkg.status != ‘DEPRECATED’; 21

5.1.5 ExternalLink Queries 22

To find all ExternalLinks that a specified object is linked to, the following query is 23
specified: 24

SELECT DISTINCT link FROM ExternalLink WHERE 25

 link IN obj.getExternalLinks(); 26

To find all objects that are linked by a specified ExternalLink, the following query 27
is specified: 28

SELECT DISTINCT obj FROM Object WHERE 29

 obj IN link.getLinkedObjects(); 30

5.1.5.1 Complex ExternalLink Queries 1

The following query gets all ExternalLinks that a specified object belongs to, that 2
are contain the word ‘lega;’ in their description and have a URL for its 3
externalURI. 4

SELECT DISTINCT link FROM ExternalLink WHERE 5

 link IN obj.getExternalLinks() AND 6

 link.description LIKE ‘%legal%’ AND 7

 link.externalURI LIKE ‘%http://%’; 8

 9

5.1.6 Audit Trail Queries 10

To get the complete collection of AuditableEvent objects the following queries are 11
specified: 12

SELECT DISTINCT ev FROM AuditableEvent WHERE 13

 ev IN obj.getAuditTrail(); 14

5.1.7 Queries Involving Restricted Joins 15

Some queries may involve a restricted join between more than one class. For 16
example the following query gets all Objects that have been deprecated and are 17
members of a package whose name contains the word ‘Acme’. 18

SELECT DISTINCT obj FROM ManagedObject, Package WHERE 19

 obj.status == ‘DEPRECTAED’ AND 20

 exists pkgs IN obj.getPackages() : pkgs.name LIKE ‘%Acme%’ 21

A.1 Mapping OQL To Relational Implementations 22

While this is an implementation detail, this section is added to explain why I feel 23
that OQL is the easiest option to map to relational queries. The constrained OQL 24
I propose is a minor extension to a subset of SQL and therefore most closely 25
related to SQL. 26

Note that I do not feel that the XPATH or homegrown XML syntax approaches 27
would be easy to map to SQL at all. The reason I emphasize ease of a relational 28
implementation is simply because this is the chosen implementation in all registry 29
implementations I am familiar with. 30

A.1.1.1 Mapping of Predicates Involving Primitive Attributes 1

Most of the RIM interfaces methods are simple get/set methods that map directly 2
to primitive attributes. For example the getName() and setName() methods on 3
Object map to a name attribute of type String. In the OQL option such predicates 4
may be passed as is to the database as a SQL query (e.g. name LIKE 5
‘%Acme%’). 6

A.1.1.2 Mapping of Predicates Involving References 7

A few of the RIM interface methods return refernces to objects (e.g. 8
Object#getAccessControlPolicy()). In such cases the references map to the ID 9
attribute for the referenced object. This is again a special case of a primitive 10
attribute mapping. In this case the ID attribute is used as a foreign key to 11
reference a row in another table. 12

A.1.1.3 Mapping of Predicates Involving Complex Attributes 13

A few of the RIM interface methods return objects that are complex types (e.g. 14
Organization#getPostalAddress()). In such cases the complex type may be 15
flattened in the relational schema. For example the address attribute could be 16
mapped to several primitive columns such as address_city. Again this becomes a 17
special case of the primitive type predicate case. The OQL processor would 18
simply do the appropriate flattening and then pass the resulting simple SQL 19
query to the database. 20

A.1.1.4 Mapping of Predicates Involving Relationship Methods 21

Many of the RIM interface methods are relationship methods involving many-to-22
many relationships (e.g. ManagedObject#getPackages()). In such cases the 23
OQL processor would define an implementation method that maps the 24
relationship method to a corresponding SQL query. The resulting SQL query 25
would be passed to the database. 26

A.1.1.5 Mapping of Predicates Involving Joins 27

Since the OQL processor would have the ability to converts individual OQL 28
predicates to SQL it would be able to compose a complex SQL query from the 29
results of the mapping. Such complex queries would be a subset of standard 30
SQL92 and will have all the expressive power of SQL. This includes the ability to 31
do simple joins involving more than one table (RIM interface). The result is a very 32
powerful capability to do queries involving simple joins. 33

Appendix B Sample Constrained XPATH Queries 1

Following is a cut-and-paste from an unreleased version of the [RS] document. 2
Note a more thorough analysis with working sample data and queries has been 3
posted to the list by me earlier. 4

5.1.8 Simple Meta Data Based Queries 5

The simplest form of ad hoc queries are based upon metadata attributes 6
specified for Registry content as specified in [RIM]. This section gives some 7
examples of simple metadata based queries. 8

For example, to get the collection of ExtrinsicObjects whose name contains the 9
word ‘Acme’ and have version greater than 1.3, the following query predicates 10
must be supported: 11

 12

/ExtrinsicObject[contains(@name,'Acme') and 13

 (@majorVersion = 1 and @minorVersion > 3) or 14

 (@majorVersion > 1)] 15

Note that the query syntax allows for conjugation of simpler predicates into more 16
complex queries as shown in the simple example above. 17

5.1.9 Classification Queries 18

This section describes the various classification related queries that must be 19
supported. Classification queries operate on virtual documents where the root is 20
a ClassificationNode. 21

5.1.9.1 Getting Root Classification Nodes 22

To get the collection of root ClassificationNodes the following query predicate 23
must be supported: 24

 25

/ClassificationNode[@parent=''] 26

The above query returns all ClassificationNodes that have their parent attribute 27
set to null. Note that the above query may also specify a predicate on the name if 28
a specific root ClassificationNode is desired. 29

5.1.9.2 Getting Children of Specified ClassificationNode 30

To get the children of a ClassificationNode given the ID of that node the following 31
query predicate must be supported: 32

 33

//ClassificationNode[@parent='/ClassificationNode/Geography'] 34

The above query returns all ClassificationNodes that have the URI for the 1
Geography node as their parent attribute. 2

5.1.9.3 Getting Objects Classified By a ClassificationNode 3

To get the collection of Objects classified by specified ClassificationNodes the 4
following query must be supported: 5

/ExtrinsicObject[6

./ClassificationNode[@name='Industry']/ClassificationNode[@name='Automotive'] and 7

./ClassificationNode[@name='Geography']/ClassificationNode[@name='Asia']] 8

The above query gets the collection of ExtrinsicObjects that are classified by the 9
Automotive Industry and the Japan Geography. Note that the query will also 10
contain any objects that are classified by descendents of the specified 11
ClassificationNodes. 12

5.1.9.4 Getting Associated Objects Based On Association Attributes 13

To get the collection of ExtrinsicObjects that are associated with a specified 14
objects based on an Association with specified, the following queries must be 15
supported: 16

 17

/ExtrinsicObject[./AssociationList/Association[18

 @associationType='CONTAINED_BY' and 19

 @name='foo' 20

 @sourceObjectRef='/partyProfiles/Acme_PartyProfile']] 21

The above query selects ExtrinsicObjects that are associated with the object 22
specified by the sourceObjectRef with an Association that has an 23
assoociationType of CONTAINED_BY and a name of ‘foo’. 24

 25

 26

 27

