For reasons of brevity, I've removed everything but John's Header Proposal. David B, March 9, 2000
Message Header Classification for ebXML TP&R Working Group

Version 3

ebXML Header Proposal

The manifest section may be used for more complex reasons than simply listing the documents contained within the body of the message. It could be used to control the selective delivery and processing of messages and also control the way a manifest is constructed using a set of criteria. Particularly in pull mode the initial requestor may first request a manifest based on some criteria and then selectively request message delivery. Because a manifest may not require corresponding content it can also be used to relate messages, provide processing status, assist in selective recovery or otherwise be used to control the protocol state of message delivery.

The table below includes a simple message manifest listing a set of DocumentReference elements – one for each document in the message body. If the view of the ebXML WG was that the manifest could provide a useful role in describing message processing state, then the manifest could include the following elements:

· Criteria Description – Selection criteria for constructing a manifest to be used in both requesting and delivering the content. This may take the form of Boolean matching criteria.

· Count/Cursor – Total messages matching the criteria and residual access cursor to request the remainder.

· Manifest Elements – Repeating elements containing a set of records for the message transaction state

IMHO, I think that overloading the Message Manifest in this way would be a BIG mistake. A good design principle is to have a single meaning associated with a single piece of data. Therefore a Message Manifest in a Message Header should only have a single purpose. The functionality that John describes are additional features that "might" be needed by "some" people, "some" of the time. In many, many instances they will not be needed at all. Therefore if we decide that we need to provide this type of functionality then it should be provided as an added optional specification on how to solve the specific problem. In my opinion we MUST:

· keep it really, really simple, at the base level, and
· only add in the additional functionality where there is a consensus in the group that it's really worthwhile doing

Linked to the manifest support is the MessageType/CommandType element which defines the delivery handling of the message. For push type interchanges, types should include Deliver and Delivery-Reply. For pull type interchanges, types should include Request-Delivery and Request-Reply. If incremental delivery is possible, then Partial-Delivery and Partial-Delivery-Reply allow manifest based exchanges in increments. Including error support, the full set of types would be:

· Deliver – Includes a manifest and optionally content

· Deliver-Reply - Provides a corresponding manifest and processing state in response to a Deliver.

· Receipt-Reply – Acknowledges receipt of a message but provides no information about the manifest in response to a Deliver.

· Request-Delivery – Describes a manifest and may request either the return of the manifest, manifest and content or portions thereof. The manifest is described in terms of matching criteria. This command should optionally allow a specification of length limitations on the response.

· Request-Reply – Returns either a manifest, manifest and content or portions thereof.

· Partial-Delivery-Reply – Allows the partial manifest or content to be returned with the provision of a correlating cursor to retrieve the next “batch” or content portion.

The use of terms and definitions above and elsewhere in this document are significantly different from the definitions of terms and ideas in the Overview and Requirements specification. This means we have a choice to make:

· re-work the Overview and Requirements specification to conform to the terminology used in John's proposal, or

· re-work John's proposal to conform to the ideas in Overview and Requirements specification

The whole idea of developing and agreeing our "Requirements" was that we would have a solid agreed base on which we can develop our specification.
Another general comment, is that this specification contains many items that are optional. Rather than have one monolithic spec with everything in it, a better idea might be to have a very, very, simple basic header which you can then extend to meet additional requirements. The simpler the base spec is, the more likely it is to be a) understood, and b) adpoted.
More detailed comments are included below ...
Header Element
Subelement
Occurs
Comments

MessageType

1
This element describes the syntax and semantics of the message

Noun
1
Name of the message, What does a "name" mean, is it a unique id? What's it's purpose how would it be used?

Verb
0 or 1
Action or service expected to process this message. If it's an action or service why don't we call it that? Service is the name used in the Requirements

CommandType
1
Defines the delivery handling of the message. See introductory notes. See comments in introductory note

Version
1
Version for this message. This in a DTD/Schema could be handled by the namespace.

Organization
1
Reference to organization that owns the definition of the message set. What does "message set" mean? Is it the other parts of the message or a set of separate messages? There could be several different owners of the specs that define the data in a message. E.g. the owner of XML schema definition, the owner of a jpec attachment. Why do we need this in the Header? A slightly better alternative would be to put it in the Message Manifest (if the manifest is used just for a manifest) but then it might duplicate information that is held in the message itself. IANA provides mechanisms for registering MIME types that includes al the information we would need. Secondly, if the specification is not registered as a MIME type then we can't include it as a MIME part. Thirdly if we don't recognize the MIME type then we will not have the software to process it and we will have an error. Fourthly, if we include Organization in the message header, what do we do if it's different in the body of the message. Finally, just calling Organization is incredibly ambiguous as it gives you no idea of the purpose of identifying "an" organization. A better name would be "MessageSetDefinitionOwner"

Encoding
0 or 1
Message encoding information. Is this things like base64? Different parts of the message could be encoded in different ways. For example some parts might be base64, some plain text, some encrypted ...

DateTimeStamp
1
Date/Time message was enveloped. This should be well defined e.g. a fixed ISO 8601 timestamp.

Expiration
0 or1
Expiration time relative to DateTimeStamp. What does expiration mean? Suggest it means the time after which the message should no longer be "processed" for it's original purpose. This doesn't mean that it should be archived, referenced from elsewhere or whatever.

Description
0 or 1
Additional descriptive text for message

MessageManifest

0 or 1
This element describes the business documents contained within the message envelope.

See introductory discussion on possible extensions to manifest use.

NOTE: Is a message without any body a valid message ? If so then this element may occur 0 or 1 times. If it is an invalid message then this element is mandatory and occurs once only.
See comments in introduction.

DocumentReference
1 or More
Using David Burdett’s note as a starting point:

<DocumentReference

 Id='AB273'

 DocumentType='Text/XML'

 URI='urn:example.com:ACV-CN-1999/2456#MessageRoutingInfo'

 Purpose='MessageRoutingInfo'

/>

MessageSender

1
Identifies the sender of the message. Mandatory element.
You might also have sender as optional since the sender might be anonymous as they do not want to identify themselves. For example if you are doing an HTTP post, then there is no need to identify yourself in any way at the message level. All you have is your IP address that might have been dynamically assigned by your ISP.

Id
1
Identification e.g.DUNS number for message sender

Domain
0 or 1
Domain where the Sender Id can be resolved. Usually the URI of some directory service. If we have Domains, then we will need to adopt some type of Domain Registry process so that Domains can be registered. This might be covered by the Reg-Rep working group.

Role
0 or 1
The role of the Sender e.g. Buyer, Seller, Broker
Valid values for role will be dependent on the service/action/verb/process/(or whatever else we call it) that is to process the message.

Credentials
0 or 1
The Senders credentials. What are credentials used for. Credentials usually imply a "certificate" of some type and that means a digital signature doesn't it? I think anything to do with signatures should be in a separate layer of the spec since many interactions will not need credentials since, for example, the message is being sent over a secure transport link such as SSL.

Name
0 or 1
Text name of the Sender

MessageReceiver

0 or 1
Optional identification of the ultimate message recipient. You could argue that a Message Receiver is equally, if not more important than the sender, since before anyone acts on a message, in many instances you will want to identify that the message was intended for you.

Id
1
Identification e.g.DUNS number for message sender

Domain
0 or 1
Domain where the Receiver Id can be resolved. Usually the URI of some directory service.

Role
0 or 1
The role of the Receiver e.g. Buyer, Seller, Broker

Credentials
0 or 1
The Receivers credentials

Name
0 or 1
Text name of the Receiver

MessageReplyTo

1
Identification of destination for normal or exception replys. How do we identify alternatives such as HTTP or HTTPS? In the requirements spec we identified different types of message: request, response, exchange, acknowledgement, completed ok, error, cancel. Each might have different reply addresses. We need to think about this.

NormalId
1
Identifier for normal reply

NormalDomain
1
Domain for normal reply

ExceptionId
1
Identifier for exception reply

ExceptionDomain
1
Domain for exception reply

MessageContext

1
Identifies the context of the message with respect to other messages. I also think we need a "Transaction Context" that is used to group together a set of related messages, for example a request message and its associated response.

Id
1
Unique identifier for this message

SequenceNumber
0 or 1
Sequence number to correlate a sequence of messages. Usually in an n of m format – may replace with MessageTotal and MessageCount pair of elements. Like this idea, but it will be optional.

InReplyTo
0 or 1
Message Id to which this is a reply

Process
1
The software processing this message. Software is too narrow a term. This also overlaps with Verb, service, etc.

Handle
0 or 1
The software process handle for this message. See comment on Process.

MessageQoS

0 or 1
Element describing the quality of service for this message

Priority
0 or 1
Message priority

Delivery
0 or 1
Type of message delivery. Examples may include OnceAndOnceOnly How do you handle OnceAndOnceOnly if the Service can't support it, if you don't say this does mean that you might get zero or many deliveries. What actions should a recipient of a message with OnceAndOnceOnly delivery do when they receive it that are different from when OnceOnlyDelivery is not specified? Duplicate etc When we (and also RosettaNet) looked closely at whether identifying messages as Duplicates, we concluded that it didn't really help the recipient.

Receipt
0 or 1
Whether a receipt is required.

ReceiptFormat
0 or 1
Format of the requested receipt What does this mean? Transport level, message ack level, business level?

ReplyLength
0 or 1
Maximum length of reply – in terms of entries in the MessageManifest See comments at the start

RetryCount
0 or 1
Number of retries allowed for reply. Is this something that software sendinga message needs to know in order know how often to re-try sending a message. Why does the recipient of a message need to know it? What does a recipient of a message do if the Retry Count is exceeded?

NOTE: There probably needs to be some security/signing elements in the MessageQoS. Suggestions please. There may be but since a) QoS and b) security are optional features, they should be layered on top of any basic message header and not be a requirement.

