[image: image1.png]\QXML

ebXML Transport, Routing & Packaging
Message Envelope STRAWMAN Specification

Working Draft 15-April-2000
This version:

STRAWMAN 0.1

Latest version:

N/A

Previous version:

N/A

Editor:

Dick Brooks <dick@8760.com>

Authors:

Dick Brooks <dick@8760.com>

Nick Kassem <nick.kassem@sun.com>

Contributors:

See Acknowledgements

Copyright statement

<EdNote> Whose do we put? IETF?? ebXML?? UN/CEFACT?? OASIS?? ... </EdNote>

Abstract

This document is a strawman whose purpose to siclicite additional input and convey the current state of our investigation into the ebXML packaging recommendations.

This document defines the structure (a.k.a. envelope) used to encapsulate data for transport between parties, following the specifications defined by ebXML. Every attempt has been made to ensure that ebXML requirements, related to transport, routing and packaging are addressed within this specification. Adherence to industry standards, use over exiting application-level transports (e.g.; http or smtp), consideration of existing business-to-business practices and support for Small and Medium Enterprises were key factors influencing the direction of this specification.

Status of this Document

This document is a dynamic STRAWMAN proposal and is not to be referenced as a formal industry standard by any party.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

Table of Contents

21
Introduction

31.1
Purpose and Scope

31.1.1
Goals

31.2
Relationship to other specifications

41.3
Specification Structure

42
Packaging and Other Requirements

63
Candidate Packaging Technologies and Selection Process

63.1
Selection Process

63.2
MIME

63.3
XML

73.4
Conclusion

84
Packaging Specification

84.1
General Conventions

84.2
Message Structure

94.3
Transport Envelope

94.4
Message Envelope Specifications

94.4.1
Content-type

104.4.2
Content-Length

114.4.3
Complete ebXML Message Envelope Example

114.5
ebXML Header Container Specifications

114.5.1
Content-ID

124.5.2
Content-Length

124.5.3
Content-Type

124.5.4
Complete Example of an ebXML Header container

134.6
Payload Container Specifications

134.6.1
Content-ID

134.6.2
Content-Length

134.6.3
Content-Type

144.6.4
Complete Example of an ebXML Payload container

144.7
Optional Support for Multipart/form-data

154.8
Complete Example of an ebXML Message enveloped using multipart/related content-type sent via HTTP POST

225
Security Considerations

226
References

227
Acknowledgements

228
Authors' Address

1 Introduction

This specification defines the message structure used to encapsulate ebXML message headers and payloads for transport between parties. No assumption or dependency is made relative to transport protocol or type of payload; the specifications contained here are both payload and transport agnostic. This main goal of this specification is to define an enveloping structure to encapsulate any digitally encoded payload for transport over any data communication mechanism. No limitation is implied relative to processing mode, the structures defined in this specification can be used in one-way, broadcast, request/response (a.k.a. RPC) or full messaging mode communications between parties.

1.1 Purpose and Scope

This document provides software practitioners with sufficient detail to develop software used in the packaging, exchange and processing of information following ebXML Transport, Routing and Packaging specifications. This document defines the enveloping specifications used to represent ebXML messages and encapsulate ebXML message headers and digital payloads for transport over a data communication mechanism. There are other aspects of ebXML messaging that are not addressed in this document, for example: Content and Semantics of Message Headers, payload structure, business processes, choreography of message exchanges and error handling. These are addressed in other ebXML specification documents.

Software practitioners are expected to use this document in combination with other ebXML specification documents when creating ebXML compliant software.

1.1.1 Goals

· Meet the requirements specified by the ebXML Transport, Routing and Packaging Overview and Requirements Document -version 0.92 [1]

· Meet the requirements identified by the packaging sub-group (the people responsible for creating this specification)

· Compatible with other ebXML specifications

· Leverage existing industry standards

· Implementable in a prototype by the May meeting of ebXML group

· Enable parties to "package" very simple to very complex combinations of headers and payloads

· Payload Neutral

· Transport Neutral

· Support corporate security policies and business practices

1.2 Relationship to other specifications

This specification is one of a set of forthcoming related specifications that cover:

· ebXML Messaging Overview - describes the relationship between the various ebXML specifications described below and how they are used in a compliant way with each other

· ebXML Message Header Specification - this specification,<EdNote> Also will defines how we handle requests, responses, message acks, cancel, error, etc and include state diagrams for each end.</EdNote>
· ebXML Reliable Messaging Specification - how to achieve robust reliable once-only delivery of message in a vendor neutral, transport independent way <EdNote>Not sure if this should include being proactive in efforts to recover from failure </EdNote>
· ebXML Messaging Security and Signature Specification - this will cover:

· how to use S/MIME with ebXML Messages

· how to use PGP with ebXML Messages

· how to use IETF/W3C XML Digital Signatures with ebXML Messages

· ebXML Common Transactions contains specifications of commonly used transactions that are applicable to many situations
· ebXML Transaction Status Inquiry Specification - how to inquire on the current status of a transaction

· ebXML Service Availability Specification - how to determine if a Service is up and running

· ebXML Messaging Discovery Specification - how to determine the parameters associated with a Service from the ebXML Messaging perspective.

· ebXML Publish & Subscribe Specification - how to do Publish and Subscribe securely using any of the above<EdNote>Not sure if this is in or out of scope for ebXML</EdNote>
· ebXML Messaging Audit Trail Specification - how to use ebXML to create audit trails of the messages exchanged during a transaction.

1.3 Specification Structure

This specification is organized around four main topics:

· Packaging and Other Requirements

· Candidate Packaging Technologies and Selection Process

· Packaging Specifications

· Security Considerations

2 Packaging and Other Requirements

The packaging sub-group began development of the ebXML envelope specification (this document) by first identifying requirements from the Transport Routing and Packaging Overview and Requirements [1] that directly affect enveloping. Secondly, the group identified requirements, specific to enveloping that were not included in [1]. This combined list of requirements was used by the group to evaluate candidate packaging technologies and would ultimately serve as the "checklist" for choosing a solution. The combined list of requirements considered by the packaging sub-group includes:

· Able to handle large documents

· Able to envelope any document type

· Minimize intrusion to payload (special encodings or alterations)

· Minimize potential for abnormal termination caused by envelopes

· Facilitate a migration path for existing installed base and technologies

· Low processing overhead

· Support for recursive documents

· Able to preserve digital signatures across transports and servers
· Able to unambiguously identify signed data

· Documents, expressed either in XML or other electronic formats, must be able to be wrapped inside a message envelope for transporting between the parties involved that want to execute an eCommerce - Service or Trasanaction [1]
· Multiple documents, whether related or not, may be transportable within a single message envelope [1]
· Messages can be transported over many network protocols (e.g. HTTP, SMTP, CORBA, JMQ, MQSeries, MSMQ, etc) [1]

· Messages can be sent using a variety of methods: [1]

a) to a single party, e.g. by specifying a URL

b) to multiple parties, e.g. by specifying a list of URLs

c) to an agent or intermediary for forwarding to the next party

· Individual messages must be capable of routing serially or in parallel with other related messages [1]

· Publish and Subscribe[1]

a) Messages may be distributed to the members of a list of parties using a "Publish and Subscribe"

mechanism

b) the anonymity of the subscriber may optionally be maintained

· Documents and/or message headers may be digitally signed seperately [1]

· The signature over the documents or message headers should be independent of the transport protocol used [1]
· A single digital signature may be used to bind together documents either: [1]

i) within the same message

ii) in another message
iii) somewhere else (for example the content at a URL)

· Signatures on digitally signed documents can be used to: [1]

i) verify the authenticity of the party that is the sender,

ii) provide non-repudiation of origin or receipt, and

iii) ensure that the content of the message has not changed

· All or part of the documents in a message may be encrypted prior to sending [1]

· messages may be encrypted during transportation using a transport protocol [1]

· documents may be time stamped securely with a digital signature [1]

· Platform Independent Interoperability [1]

1) Servers/systems that support the exchange of documents can be treated as "black boxes"
2) The method used to transport documents is completely independent of:

a) the hardware used by the server/services at each end

b) the software or systems architecture of the server/services at each

c) the language used for implementation of systems and applications.

3) Support for a service can be expressed solely in terms of the type and sequence in which documents (and their message envelopes) can be exchanged

4) The approach must be suitable for implementation on hardware that varies from a very simple device to a large multi-processor/system complex

· The protocol must be extensible to support: [1]

a) additional types of data in message headers and message routing information

b) new values for codes
c) new ways and methods of exchanging data

· enable any party to carry out integrated eCommerce transactions with any other party anywhere in the world using their hardware and software vendor of choice [1]

· attract a wide variety of vendors to implement the approach [1]

· to not reinvent the wheel - re-use existing standards where ever possible [1]

· to enable existing "messaging" solutions to "bridge" to the ebXML solution [1]

· to scale from SMEs to large companies [1]

· to scale from low power to high end solutions [1]

3 Candidate Packaging Technologies and Selection Process

The packaging sub-group began its investigation of packaging technologies by identifying the technologies currently used for business-to-business message exchange or were being developed for this purpose. The following packaging technologies were identified:

· MIME - currently in use by companies exchanging business transactions using E-mail and HTTP

· XML - currently used by RosettaNet and Microsoft (BizTalk and SOAP) and others

3.1 Selection Process

Each candidate technology was evaluated based on its ability to meet the requirements listed in the section titled "Packaging and other Requirements" elsewhere in this document. When necessary, specific parties were contacted to provide details describing how a technology was being used to meet specific requirements. The following parties were contacted to provide expert insight:

· Microsoft - David Turner, regarding use of XML packaging in BizTalk

· Develop Mentor - Don Box, regarding use of XML packaging in SOAP

· Vitria - Prasad Yendluri, regarding use of XML packaging in RosettaNet

· Jonathan Borden - author of XMTP [3], an XML to MIME transformation tool

 The packaging sub-group considered the inputs of people from the ebXML Transport mailing list as well as the parties listed above, before making a selection.

3.2 MIME

Multipurpose Internet Mail Extensions (MIME) is an international standard created by the Internet Engineering Task Force. It has been implemented by numerous software vendors across the globe and has been used to exchange mixed type payloads, including XML, for several years. MIME was designed purely as a packaging (enveloping) solution to allow the transport of mixed payloads using Internet E-mail (SMTP). MIME is also being used by other transport technologies as a packaging technology, most notably HTTP.

3.3 XML

eXtensible Markup Language (XML) is an international standard created by the World Wide Web Consortium. It has been implemented by numerous software vendors across the globe and has been used to describe a broad spectrum of document structures from very simple to very complex. XML is a very flexible description language that can be used to represent virtually any type of document. XML can be used solely for packaging (enveloping) documents of any type, providing the data can be "transformed" into "legal XML.

In some cases, XML documents must be placed into a transport specific "envelopes" before being transported. For example, XML data must be placed into a MIME envelope when being transported via SMTP or HTTP.

3.4 Conclusion

The packaging sub-group examined the capabilities of both XML and MIME relative to the list of packaging requirements above. It's important to note that neither technology met all of the ebXML requirements and in the end it was the packaging sub-groups assessment of which technology came closest to meeting ALL of the ebXML requirements that determined which technology should be used.

MIME was chosen to serve as the ebXML packaging technology, over XML, based on the following:

· There is no formal packaging standard within IETF or W3C, based on XML. If ebXML were to choose XML as a packaging technology it would be required to define an XML packaging specification and submit this to IETF or W3C for adoption as a formal standard. The packaging group decided that MIME was a better choice, given the following requirement:

 "to not reinvent the wheel - re-use where possible [1]

· XML requires that binary and other types of payload data be base64 encoded in order to be encapsulated within a XML root document. Base64 encoding ensures that no illegal XML characters exist within a document and recursive XML documents are "hidden". Base64encoding imposes a significant processing overhead and results in larger messages, which affect both transmission and processing times. Base64 encoding of binary data is required of MIME content when being transported by SMTP, but this is a transport level requirement, not a requirement imposed by MIME. Binary data can be packaged and transported without alteration when using MIME over HTTP. MIME was chosen over XML based on the following requirements:

- Minimize intrusion to payload (special encodings or alterations)

- Low processing overhead

· There is no industry standard way to package an encrypted message, or portion of a message, using XML. MIME was chosen over XML based on the following requirement:

· All or part of the documents in a message may be encrypted prior to sending [1]
· What about large documents are not handled well in current parser technology?
The packaging sub-group did find that the deficiencies listed above that caused XML to be excluded were directly related to XML's immaturity relative to MIME. It was the sub-groups opinion that XML is a powerful technology, with great potential and the ebXML group should continue to monitor XML's progress in these areas. It is expected that XML will overcome these issues and may one day provide a good packaging solution for ebXML.

The ebXML steering committee should consider sending this document to the W3C for consideration as a set of requirements to be used by a W3C workgroup in the creation of an XML based packaging solution.

4 Packaging Specification

4.1 General Conventions

· All headers, attributes and values defined in this specification are to be handled in a case insensitive fashion, regardless of the way information is presented in this document

· All messages following the ebXML standard must follow the specifications for packaging defined in this document, regardless of message type (request, response, error, et al).

4.2 Message Structure

A Message Consists of:

· a conditional outer Transport Envelope, such as HTTP or SMTP, that wraps,

· a transport independent Message Envelope based on MIME multipart/related, that contains the two main parts of the Message:

· a Header container that is used to envelope one ebXML header document, and

· an optional Payload container that is used to envelope the payload of the Message

[image: image1.png]

ebXML

Header

Container

ebXML

Payload

Container
4.3 Transport Envelope

This document does NOT define any requirements affecting the structure of transport level envelopes. It is expected that existing transport systems, such as SMTP, HTTP, FTP and others can be used to send/receive ebXML compliant messages, without modification. The only requirement ebXML has on the transport envelope is the ability to identify a specific "handler" to receive incoming ebXML messages. All known transports support this requirement.

A transport envelope is only required in those cases requiring such structures. In the case of HTTP or SMTP transport envelopes are REQUIRED, however in the case of FTP no transport envelope is needed.

In summary, an implementer of software to process ebXML messages must be aware of transport specific requirements relative to transport envelopes.
The only requirement ebXML places on the Transport System is the ability to identify a specific "handler" to process ebXML messages. Each transport uses a unique format to represent this "handler". In all cases where transport allows the use of a recipient identifier the ebXML handler will be accessible at the transport level using the identifier "ebxmlhandler".

In the case of HTTP, the ebXML handler is identified with "ebxmlhandler" and is associated with the Request-URI on a POST operation, for example:

 request URI

POST /ebxmlhandler HTTP/1.1

In the case of E-Mail (SMTP) the ebxmlhandler will be identified with the "To" header, for example:

To: ebxmlhandler@company.com

4.4 Message Envelope Specifications

The message envelope is used to identify the message as an ebXML compliant structure and encapsulates the header and payload body parts. A message envelope MUST HAVE two MIME headers:

1. Content-Length

2. Content-type

4.4.1 Content-type

Three MIME types were considered to serve as content-type for the ebXML Message Envelope:

- Multipart/related

- Multipart/Mixed

- Multipart/form-data

There was some discussion over the similarities of multipart/related and multipart/mixed, both of which appear to offer similar capabilities and both could meet stated requirements. However, the group converged on multipart/related, believing it to be more semantically appropriate for ebXML.

There was significant discussion over whether to support multipart/form-data as an alternate content-type for message-envelope, due to the large installed base of web browsers that support this content-type.

It was determined that multipart/related was a more generic content-type than multipart/form-data and the multipart/related content-type is the preferred content-type for ebXML message envelopes. Multipart/form-data content-type is typically associated with HTTP/HTML web forms, whereas multipart/related can be associated with any type of data.

However, the ebXML packaging sub-group, recognizing the ubiquity of web browsers and the current ability to use interactive web forms and the multipart/form-data content-type to send digital payloads today provides support for the multipart/form-data content-type in the ebXML message envelope for interactive, web form, data exchanges. A detailed description of how multipart/form-data is supported is described later in this section.

The Content-type header also contains three attributes:

1. type

2. version

3. boundary

The type attribute is used to identify the message envelope as an ebXML compliant structure. There is only one valid value for this attribute: "ebxml". The following is an example usage of the type attribute:

e.g. Content-type: multipart/related; type="ebxml"

The version attribute is used to identify the particular version of ebxml message envelope being used. There are currently two valid values for version:

1. "0" indicating a version-less message; ALL ebXML implementations must support version=less messages

2. "0.1" indicating the current version of ebXML.

Currently, there are no version-less message envelopes defined, therefore all message headers SHOULD USE "0.1". The following is an example usage of version:

Content-type: multipart/related; type="ebxml"; version="0.1"

The boundary attribute is used to identify the body part separator used to identify the start and end points of each body part contained in the message. The boundary should be chosen carefully to insure that it does not occur within the content area of a body part. Example usage of the boundary attribute:

Content-type: multipart/related; type="ebxml"; version="0.1"; boundary="-------8760"

4.4.2 Content-Length

The Content-Length header is a decimal value used to identify the total number of OCTETS contained in all message body parts, including body part boundaries. Example:

Content-Length: 9841

4.4.3 Complete ebXML Message Envelope Example

An example of a complete ebXML compliant Message Envelope appears as follows:

Content-type: multipart/related; type="ebxml"; version="0.1"; boundary="-------8760"

Content-Length: 9841

4.5 ebXML Header Container Specifications

The ebXML Header container is a MIME body part used to encapsulate an ebXML header document. The ebXML header document is described in ebXML Message Header Specification [2]. There MUST BE one ebXML header document associated with every ebXML Message. The ebXML Header container consists of a MIME Header portion, referred to as the ebXML Header envelope and a content portion.

The ebXML Header envelope, consists of three MIME headers:

1. Content-ID

2. Content-Length

3. Content-Type

The content portion contains a ebXML header document as defined by [2]. The ebXML header document within the content portion of the container MAY BE enhanced during transport, provided it has not been digitally signed. Any change in the size of the ebXML header document must be reflected in Content-Length header of the ebXML Message Envelope and ebXML Header envelope.

4.5.1 Content-ID

The Content-ID MIME header is used to uniquely identify this container as the ebXML header envelope. There is only one possible value to associate with this header "ebxmlheader". An example usage follows:

Content-ID: ebxmlheader

4.5.2 Content-Length

The Content-Length header contains a decimal value used to identify the total number of OCTETS contained in the ebXML header document residing in the content portion of the container. Example:

Content-Length: 4208

4.5.3 Content-Type

The Content-type for an ebXML header is identified with the value "application/xml", as defined in RFC2376. An example of this content-type is:

Content-type: application/xml

4.5.3.1 Optional Support for Signed Headers

Implementers are free to support digitally signed ebXML header documents. Digitally signed ebXML headers must be identified with the appropriate Content-Type and structure appropriate for the cryptographic tool used. In the case of S/MIME, the content-type must contain the correct value and attributes as specified in RFC 2633; in the case of OpenPGP, the content-type must contain the correct values and attributes specified in RFC 2015.

Implementers must follow the guidelines specified in RFC 2015 and RFC 2633 for creating and processing digitally signed objects.

If XML Dsig is used then implementers are expected to follow the specifications contained in the W3C Recommendation for XML Dsig.

4.5.4 Complete Example of an ebXML Header container

The following represents an example of an ebXML header envelope and ebXML header document:

Content-ID: ebxmlheader -------------| |

Content-Length: 2048 | ebXML Header Envelope |

Content-Type: application/xml -------------| | ebXML

 | Header

<ebXMLHeaderDocument> -------------| | Container

<MessageHeader>........ | ebXML header Document |

</MessageHeader> | |

</ebXMLHeaderDocument> -------------| |

NOTE: Place REAL ebXML Header example here when available.

4.6 Payload Container Specifications

The payload container of Message is optional. The ebXML header document contains a Message Manifest that identifies whether a payload container is present or not. If the Message Manifest of the ebXML header contains no entries then the ebXML payload container will not be present in the ebXML Message. (is the manifest always present?)
However, if the Message Manifest of the ebXML header indicates that a payload is present it will consist of a MIME header portion, referred to as the ebXML payload envelope and a content portion.

The ebXML Payload envelope, consists of three MIME headers:

4. Content-ID

5. Content-Length

6. Content-Type

The content portion contains whatever structure and content two consenting parties agree to exchange. ebXML makes no provision nor limits in any way the structure or content of payloads. Payloads may contain simple plain text object or complex nested multipart objects. This is the implementers decision.

4.6.1 Content-ID

The Content-ID MIME header is used to uniquely identify this container as the ebXML payload envelope. There is only one possible value to associate with this header "ebxmlpayload". An example usage follows:

Content-ID: ebxmlpayload

4.6.2 Content-Length

The Content-Length header contains a decimal value used to identify the total number of OCTETS contained in the content portion of the payload container. Example:

Content-Length: 5012

4.6.3 Content-Type

The Content-type for an ebXML header is determined by the implementer and is used to identify with the type of data contained in the content portion of the payload container.

4.6.3.1 Optional Support for Signed and Encrypted Payloads

Implementers are free to support encrypted and digitally signed paylaods. Digitally signed and/or encrypted payloads must be identified with the appropriate Content-Type and structure appropriate for the cryptographic tool used. In the case of S/MIME, the content-type must contain the correct value and attributes as specified in RFC 2633; in the case of OpenPGP, the content-type must contain the correct values and attributes specified in RFC 2015.

Implementers must follow the guidelines specified in RFC 2015 and RFC 2633 for creating and processing encrypted and digitally signed objects.

If XML Dsig is used then implementers are expected to follow the specifications contained in the W3C Recommendation for XML Dsig.

4.6.4 Complete Example of an ebXML Payload container

The following represents an example of an ebXML payload envelope and ebXML payload document:

Content-ID: ebxmlpayload -------------| |

Content-Length: 4096 | ebXML Payload Envelope |

Content-Type: application/xml -------------| | ebXML

 | Payload

<Invoice> -------------| | Container

<Invoicedata>........ | ebXML Payload |

</Invoicedata> | |

</Invoice> -------------| |

4.7 Optional Support for Multipart/form-data

There is a large installed base of web browsers that are capable of sending XML data and other data types to a web server located in a corporate network using a standard part of every browser made since 1998, multpart/form-data encoding (ref RFC 1867).

Implementers of ebXML server are encouraged to optionally support multipart/form-data enveloping of ebXML headers and payloads. When multipart/form-data is used the Message envelope is changed from multipart/related to multipart/form-data and the type and and version attributes are "dropped". An example of a multipart/form-data Message envelope appears as follows:

Content-Type: multipart/form-data; boundary=---------------------------7d02a82e5f8

Content-Length: 9293

The ebXML header envelope and ebXML payload envelope are also changed as a result of multipart/form-data enveloping. The Content-ID MIME headers are replaced with a Content-disposition header. The ebXML header consists of a Content-Disposition header with a name attribute containing the value of "ebxmlheader", for example:

Content-Disposition: form-data; name="ebxmlheader"

Content-Type: application/xml

The ebxml payload header consists of a single MIME Content-Disposition with a name attribute containing the value of "ebxmlpayload", for example:

Content-Disposition: form-data; name="ebxmlpayload"

Content-Type: application/xml

Note that the Content-Length header has been removed from the ebXML header envelope and ebXML Payload envelope when using multipart/form-data.

Neither the ebXML Header document nor the payload data are affected by this change.

NOTE: Web browsers are relatively limited in their ability to "package" payload data, implementers should consider web browser limitations carefully before attempting to use this approach.

4.8 Complete Example of an ebXML Message enveloped using multipart/related content-type sent via HTTP POST

Following is a complete example of an ebXML Mssage sent via HTTP POST method:

POST /ebxmlhandler HTTP/1.1

Accept: multipart/related

Accept-Language: en-us

Content-Type: multipart/related; type=ebxml; version=0.1; boundary=---------------------------7d02a82e5f8

Accept-Encoding: gzip, deflate

User-Agent: Group 8760 InsideAgent

Host: localhost:9090

Content-Length: 9293

Connection: Keep-Alive

-----------------------------7d02a82e5f8

Content-ID: ebxmlheader

Content-Length: 211

Content-Type: application/xml

<ebXMLMessageHeader>

<Version>1.0</Version>

 <MessageType>Request</MessageType>

<ServiceType>Payroll</ServiceType>

<Intent>RecordCommission</Intent>

</ebXMLMessageHeader>

-----------------------------7d02a82e5f8

Content-ID: ebxmlpayload

Content-Length: 7517

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XML Spy v2.5 - http://www.xmlspy.com -->

<HITISMessage xmlns="" Version="1.0">

<Header OriginalBodyRequested="false" ImmediateResponseRequired="true">

<FromURI>http://www.pms.com/HITISInterface</FromURI>

<ToURI>http://www.crs.com/HITISInterface</ToURI>

<ReplyToURI>http://www.pms.com/HITISInterface</ReplyToURI>

<MessageID>1234567890</MessageID>

<OriginalMessageID>1234567890</OriginalMessageID>

<TimeStamp>1999-11-10T10:23:44</TimeStamp>

<Token>1234-567-8901</Token>

<!--Token to be assigned in response to HITISRegister-->

</Header>

<Body>

<HITISOperation OperationName="CommissionEventsUpdate">

<CommissionEvents>

<CommissionEvent>

<ConfirmationID>18097YZ</ConfirmationID>

<ConfirmationOriginatorCode>DBZ223</ConfirmationOriginatorCode>

<CommissionOriginatorCode>3457YTXV</CommissionOriginatorCode>

<ReservationID>098787818097YZ</ReservationID>

<HotelReference>

<ChainCode>HI234</ChainCode>

<HotelCode>1234STL</HotelCode>

</HotelReference>

<OriginalBookingDate>19991223T17:53:22</OriginalBookingDate>

<StayDateRange>

<StartInstant>20000122</StartInstant>

<Duration>00000003T000000</Duration>

</StayDateRange>

<GuestNames>

<NameInfo>

<NamePrefix>Mr.</NamePrefix>

<NameFirst>John</NameFirst>

<NameMiddle>Q.</NameMiddle>

<NameSur>jones</NameSur>

<NameSuffix>Jr.</NameSuffix>

<NameTitle>Professor</NameTitle>

<NameOrdered>JohnJones</NameOrdered>

</NameInfo>

<NameInfo>

<NamePrefix>Mrs.</NamePrefix>

<NameFirst>Sally</NameFirst>

<NameMiddle>T.</NameMiddle>

<NameSur>Jones</NameSur>

<NameSuffix/>

<NameTitle/>

<NameOrdered>SallyJones</NameOrdered>

</NameInfo>

</GuestNames>

<ProfileCertification CertificationType="ARC">

<CertificationID>67TR901-AZ</CertificationID>

</ProfileCertification>

<ProfileReference>

<!--Profile to be inserted as a reusable component-->

<Profile/>

</ProfileReference>

<Commissions>

<Commission CommissionStatusType="Full">

<CommissionableAmount>

<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>185.00</Amount>

</Currency>

</CommissionableAmount>

<PrepaidAmount>

<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>12.00</Amount>

</Currency>

</PrepaidAmount>

<CommissionPercent>0.0525</CommissionPercent>

<FlatCommission>not applicable<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>00.00</Amount>

</Currency>

</FlatCommission>

<Comment>Default percentage commission agreement</Comment>

<CommissionReasonCode>7930</CommissionReasonCode>

<BillToID>HOTEL7890</BillToID>

<HotelReference>

<ChainCode>HI234</ChainCode>

<HotelCode>1234STL</HotelCode>

</HotelReference>

</Commission>

<Commission CommissionStatusType="Partial">

<CommissionableAmount>

<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>185.00</Amount>

</Currency>

</CommissionableAmount>

<PrepaidAmount>

<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>00.00</Amount>

</Currency>

</PrepaidAmount>

<Comment>This commission per agreement with Travel Agents, Inc.</Comment>

<CommissionPercent>00.00</CommissionPercent>

<FlatCommission>

<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>10.00</Amount>

</Currency>

</FlatCommission>

<CommissionReasonCode>7930</CommissionReasonCode>

<BillToID>HOTEL7890</BillToID>

<HotelReference>

<ChainCode>HI234</ChainCode>

<HotelCode>1234STL</HotelCode>

</HotelReference>

</Commission>

</Commissions>

</CommissionEvent>

<CommissionEvent>

<ConfirmationID/>

<ConfirmationOriginatorCode/>

<CommissionOriginatorCode>3457YTXV</CommissionOriginatorCode>

<ReservationID>09878783276XY</ReservationID>

<HotelReference>

<ChainCode>BASS123</ChainCode>

<HotelCode>1234STL</HotelCode>

</HotelReference>

<OriginalBookingDate>19991223T17:53:22</OriginalBookingDate>

<StayDateRange>

<StartInstant>20000122</StartInstant>

<Duration>00000003T000000</Duration>

</StayDateRange>

<GuestNames>

<NameInfo>

<NamePrefix>Mr.</NamePrefix>

<NameFirst>Kevin</NameFirst>

<NameMiddle>R.</NameMiddle>

<NameSur>Smithson</NameSur>

<NameSuffix>Jr.</NameSuffix>

<NameTitle>Professor</NameTitle>

<NameOrdered> Kevin Smithson</NameOrdered>

</NameInfo>

<NameInfo>

<NamePrefix>Miss</NamePrefix>

<NameFirst>Mary</NameFirst>

<NameMiddle>T.</NameMiddle>

<NameSur>Smithson</NameSur>

<NameSuffix>esq.</NameSuffix>

<NameTitle>Professor</NameTitle>

<NameOrdered> MarySmithson</NameOrdered>

</NameInfo>

</GuestNames>

<ProfileCertification CertificationType="ARC">

<CertificationID>67TR901-AZ</CertificationID>

</ProfileCertification>

<ProfileReference>

<Profile/>

</ProfileReference>

<Commissions>

<Commission CommissionStatusType="Full">

<CommissionableAmount>

<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>185.00</Amount>

</Currency>

</CommissionableAmount>

<PrepaidAmount>

<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>12.00</Amount>

</Currency>

</PrepaidAmount>

<CommissionPercent>0.0525</CommissionPercent>

<FlatCommission>not applicable<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>00.00</Amount>

</Currency>

</FlatCommission>

<Comment>Default percentage commission agreement</Comment>

<CommissionReasonCode>7930</CommissionReasonCode>

<BillToID>HOTEL7890</BillToID>

<HotelReference>

<ChainCode>HI234</ChainCode>

<HotelCode>1234STL</HotelCode>

</HotelReference>

</Commission>

<Commission CommissionStatusType="Partial">

<CommissionableAmount>

<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>185.00</Amount>

</Currency>

</CommissionableAmount>

<PrepaidAmount>

<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>00.00</Amount>

</Currency>

</PrepaidAmount>

<Comment>Flat commission per agreement with TA</Comment>

<CommissionPercent>00.00</CommissionPercent>

<FlatCommission>

<Currency>

<CurrencyCode>USD</CurrencyCode>

<Amount>10.00</Amount>

</Currency>

</FlatCommission>

<CommissionReasonCode>7930</CommissionReasonCode>

<BillToID>HOTEL7890</BillToID>

<HotelReference>

<ChainCode>HI234</ChainCode>

<HotelCode>1234STL</HotelCode>

</HotelReference>

</Commission>

</Commissions>

</CommissionEvent>

</CommissionEvents>

</HITISOperation>

</Body>

</HITISMessage>

-----------------------------7d02a82e5f8--

5 Security Considerations

Implementers should examine carefully the security features of each transport. In the case of HTTP, Implementers are encouraged to use Realm Security, using basic authentication for access controls and SSL to protect sensitive information.

Users of E-Mail based solution should ensure that anti-spamming services are in place and filtering is used to prevent unauthorized access to E-Commerce Servers.

6 References

[1]
ebXML Transport, Routing and Packaging: Overview and Requirements document version x.x. Published xx April 2000

[2]
ebXML Transport, Routing and Packaging: Message Header Specification version x.x. Published dd mmmm 2000

[3] XMTP - Extensible Mail Transport Protocol

http://www.openhealth.org/documents/xmtp.htm

7 Acknowledgements

Jonathan Borden - Author of XMTP

Jon Bosak - Sun

David Burdett - Commerce One

Rik Drummond - Drummond Group

Christopher Ferris - Sun

Jim McCarthy - webXI

Bob Miller - GEIS

Prasad Yendluri - Vitria

8 Authors' Address

Dick Brooks

Group 8760

110 12th Street North

Suite F103

Birmingham, Alabama 35203

Telephone: 205-250-8053

E-mail: dick@8760.com

Nick Kassem

Sun Microsystems

E-mail: Nick.Kassem@eng.sun.com

Need the rest of Nicks info

payload object

ebXML header document

ebxml payload envelope

ebXML header envelope

ebXML Message Envelope

Transport Envelope

37
ebXML Message Envelope Specification v0-1 (1-April-2000)
23

