[image: image4.png]\QXML

ebXML Transport, Routing & Packaging
Strawman Message Header Specification

Working Draft 11-May-2000
This version:

ebXML Message Header Specification v0-32.doc
Latest version:

(URL to latest version)

Previous version:

(URL to previous version)

Editor:

David Burdett <david.burdett@commerceone.com>

Authors:

David Burdett <david.burdett@commerceone.com>

John Ibbotson <john_ibbotson@uk.ibm.com>

Contributors:

See Acknowledgements

Copyright statement

<EdNote> Whose do we put? IETF?? ebXML?? UN/CEFACT?? OASIS?? ... </EdNote>

Abstract

Contains an overview of the purpose of the specification and how it relates to other documents

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

Status of this Document

Table of Contents

21
Introduction

21.1
Message Headers

21.2
Relationship to other ebXML Transport, Routing, and Packaging specifications

31.3
Specification Structure

42
Message Structure

52.1
Header Parts

52.1.1
Why Separate Header Parts

72.2
Message Header, Header Part

82.3
Message Manifest

92.4
Message Type Dependent Header Parts

92.4.1
Error Data Header Part

103
Header Levels

104
Template Document Exchanges

104.1
Message Types

104.1.1
What is a Message Type

104.1.2
Common Message Processing

114.1.3
Descriptions of Message Types

135
Schemas, DTD Definitions and Examples

135.1
XML Header DTD

135.2
XML Header Schema Definition

136
References

137
Acknowledgements

138
Authors' Address

1 Introduction

This specification coversdefinitions of the content of Message Header elements for use within ebXML message handling.

Message Headers are contained within an outer Message Envelope. The structure and format of the Message Envelope is defined separately [2].

1.1 Message Headers

A Message Header is an XML construct that contains the additional data that needs to be associated with the documents in a message so that they can be delivered to and successfully processed by a Party.

1.2 Relationship to other ebXML Transport, Routing, and Packaging specifications

This specification is one of a set of related specifications These specifications cover:

· ebXML Messaging Overview [Overview] - describes the relationship between the various ebXML specifications described below and how they are used in a compliant way with each other

· ebXML Message Header Specification - this specification,<EdNote> Also will defines how we handle requests, responses, message acks, cancel, error, etc and include state diagrams for each end.</EdNote>
· ebXML Message Envelope Specification [Envelope]- how to wrap header's and bodies in a MIME wrapper. This will be extended in the future to describe how to wrap headers and bodies in an XML enevelope, although the XML Envelope may be developed as a separate specification. Specifications are provided to cover:

· ebXML Messaging over HTTP - how to send ebXML Messages using HTTP or HTTPS

· ebXML Messaging over SMTP - how to send ebXML Messages using SMTP

· supplements for other protocols are contained in separate documents

· ebXML Reliable Messaging Specification - how to achieve robust reliable once-only delivery of message in a vendor neutral, transport independent way <EdNote>Not sure if this should include being proactive in efforts to recover from failure </EdNote>
· ebXML Messaging Security and Signature Specification - this will cover:

· how to use S/MIME with ebXML Messages

· how to use PGP with ebXML Messages

· how to use IETF/W3C XML Digital Signatures with ebXML Messages

· ebXML Common Message sets contains specifications of commonly used message sets that are applicable to many situations:
· ebXML Message set Status Inquiry Specification - how to inquire on the current status of a message set

· ebXML Service Availability Specification - how to determine if a Service is up and running

· ebXML Messaging Discovery Specification - how to determine the parameters associated with a Service from the ebXML Messaging perspective.

· ebXML Publish & Subscribe Specification - how to do Publish and Subscribe securely using any of the above<EdNote>Not sure if this is in or out of scope for ebXML</EdNote>
· ebXML Messaging Audit Trail Specification - how to use ebXML to create audit trails of the messages exchanged during a message set.

1.3 Specification Structure

The remainder of this specification contains:

· list of sections and their purpose ... to be completed

2 Message Structure

The structure of a message is illustrated by the diagram below. Change picture to add Message Manifest

<ED NOTE> Change Body to Payload in diagram. Perhaps the Message Envelope should be identified as the ebXML Envelope</ED NOTE>

[image: image1.wmf]Transport Envelope

Message Envelope

Header

Header

Part

Header

Part

Header

Part

...

Body

Message

Body Part

Message

Body Part

Message

Body Part

...

Message

Header

Message

Routing Info

Message

Routing

History

Secure

Timestamp

Signatures

Errors

A Message Consists of:

· an outer Transport Envelope, such as HTTP or SMTP, that wraps,

· a transport independent Message Envelope (see ebXML Message Envelope Specification[Envelope]) that contains the two main parts of the Message itself by wrapping:

· a Header with one or more header parts inside, (the subject of this specification), and

· a Payload that contains the document(s) associated with the message.

In general, separate header parts are used where:

· different software is likely to be used to generate that header part,

· the structure of the header part might vary independently of the other header parts, or

· the data contained in the header part may need to be digitally signed separately from the other header parts.

2.1 Header Parts

Using this principle, the following main header parts have been identified:

· a Message Manifest -xxxdefine

· a Message Header header part, that contains the additional data that needs to be associated with the Documents in a Message so that they can be sent to and successfully processed by a Party. This data is typically set by the application that determines that a message needs to be sent. The data remains the same no matter what method or protocol is used to transport the message

· Message Routing Info header part that indicates the destination that will be or has been taken by a Message in order to reach its next destination. This changes whenever a message is sent or resent by a different route or when it is transported between its orgin and its ultimate destination in a series of hops

· Message Routing History header part. This is only required when a message is travelling through mutliple hops. It contains copies either:

· earlier Message Routing Info header parts that were used to transport the message, or

· Message Receipt Information header parts that records the receipt of a Message at a destination.

· Message Type Dependent Headers header part. These are header parts that may be present depending on the Message Type of the header (see section 2.6). They are:

· a Status Header Part

· an Error Data Header Part, and

· an Authorization Data Header Part.

· Secure Timestamp header part. This contains data that can be used to prove that an event of some kind happened at a particular time. Examples of events include:

· creating a message header

· sending a message

· receiving a message.

· Signature header parts that contain one or more digitally signatures of data in the Header, the Message Body or elsewhere, and

· optional Other Message Headers that may need to be associated with the Message that are implementation specific.

Note that the Message Header header part is the only header part that is present in every Message. Later parts of this specification describe the conditions where the other header parts MAY be used.

2.1.1 Why Separate Header Parts

The following provides explanations as to why these header parts have been defined separately.

Message Routing Information is held separately from other documents in the Header, such as the Message Header, since:

· it would break any digital signature on those documents as Message Routing Information is changed each time the Message is forwarded to a new URL or is resent

· it makes it easier to separate the processing logic that determines the logical destination (e.g. the business application) from the physical destination. As a result business applications need not be aware of changes to network designs that result in changes to URLs to which Messages are sent,

· if a particular URL is not accepting Messages for some reason, then an alternative URL may be used without invalidating any existing signatures on the other header parts

Message Routing History is held separately since:

· it is only required on messages that traverse multiple hops, and

· it makes it easier to distinguish between the Message Routing information that is current from information that is historical.

Secure Timestamp is held separately since it optional, and its structure is defined by separate standards. <EdNote> What standards exist that we could use? Do we need to specify how to use a standard to do secure timestamps. </EdNote>

Signatures are held separately from the other header parts since signatures cannot sign themselves, and it makes it easier for software processing the header to automatically check the signature and therefore determine the authenticity of the sender of the message and whether or not the data has changed. As a result the burden of checking the signature can be removed from the application or other process that is the ultimate destination for the message.

Descriptions of each Header Part and their element content follow.
2.2 Message Header, Header Part

The following is an overview of each of the elements in a ebXML Message Header.

All the information in the Message Header is typically provided by a Business Application. It is held in a separate header part so that it may be digitally signed and its signature preserved, no matter where the message is routed.

	Message Header Element
	Outline Description

	1) Message Header Version.
	Contains the version of the header. This will follow whatever ebXML standard for versioning is adopted

	2) Message Type (enumerated list)
	Contains the type of the message. See separate documentation for details. Valid values are:

· Normal

· Acknowledgement

· Error

The Message Type is to let ebXML aware software provide reliable messaging on behalf of an application

	3) Service Type (string)
	· Identifies the business service interface that should act on the payload in the message.

Service Types shall be unique within the domain in which they are being used. URN's may be considered suitable for this purpose.

<ED NOTE> Need to coordinate with the Business Process Group to align with naming and semantics with the business model. </ED NOTE>

	4) Intent (string)
	Intent specifies the reason or intention for sending a message.

Intent shall be unique within a Service Type.

<ED NOTE> Need to coordinate with the Business Process Group to align with naming and semantics with the business model. </ED NOTE>

	5) Message Set Data
	Message Set Data contains information that describes a set of related Messages. All the data in this element is identical in all the messages in a Message Set. If a digital signature on a message signs the Message Set Data and some other data on the message, it is possible to prove that messages are related. In this way an audit trail of a Message Set can be provided.

	a) Message Set Id
	This is a globally unique identifier for the Message Set.

	6) Message Data
	Message Data contains information that describes an individual Message.

	a) Message Identifier (string)
	This is a globally unique identifier for an individual Message.

	b) Message Creation Timestamp
	This is the time that the Message Header was created.

	c) Ref To Message Identifier
	If a message is created as the result of processing a previous message, then Ref To Message Identifier contains the Message Identifier of the message that was processed. Otherwise, the value is set to “Not Applicable”.

	7) Transport Service Level Agreement Id
	Identifies the transport level Service Level Agreement to be used when sending and receiving this message. Defaults to an ebXML standard Service Level Agreement for a Transport Protocol.

	8) From
	Identifies the Party sending the message.

	a) Party Id
	The identifier of the sending Party.

	i) Address Context (optional)
	The context used to resolve the sending Party Address.

	ii) Address
	The address of the sending Party. <ED NOTE> Need to describe how address and address context are used in an explanitory note in the data dictionary. </ED NOTE>

	9) To
	Identifies the Party receiving the message.

	a) Party Id
	The identifier of the receiving Party.

	i) Address Context (optional)
	The context used to resolve the receiving Party Address

	ii) Address
	The address of the receivng Party.

	10) Reliable Messaging Info
	

	a) Guaranteed Delivery
	Indicates the degree of reliablity of delivery. Valid values:

· Unspecified (default)

· AtMostOnce

2.3 Message Manifest

This shall be the first header part in the ebXML Header. It identifies the various header parts and payloads contained in the ebXML message envelope.

	11) Message Manifest .
	This contains pointers to the other header parts that are present as well as the payload(s) of the message.

	a) Document Reference
	Contains a reference to an individual header part or payload(s). This value shall occur one or more times.

	i) Document Identifier (may be a URL)
	Identifier for the header part or payload. This identifier shall be unique within the Message Id (it may also be globally unique). The purpose of the identifier is to make it easier to directly extract a particular header part or payload.

	ii) Document Label (optional)
	. A textual description of the header part or payload referenced by the Document Identifier

2.4 Message Type Dependent Header Parts

The Message Types that are allowable are defined in section 5.1.10 Message Types. Depending on the Message Type, different header parts may be present in the Header in addition to those described in section 2.1.

The Message Type Dependent Header Parts are:

· a Status Header Part, that indicates the status of the execution of a Message Set or Document Exchange
· an Error Header Part that indicates one or more errors in a Message
· an Authorization Data Header Part that contains data that indicates:

· who or what is authorizing a Service, and

· Status Header Part(s) that prove that earlier Message Sets or Document Exchanges completed sucessfully

The Message Type Dependent Header Parts that may be present in a Message of a particular type are described below.

Normal Message Header Parts

A Normal Message MAY also contain an Authorization Data Header Part.

Acknowledgement Message Header Parts

An Acknowledgement Message MUST NOT contain any additional Message Type dependent header parts.
Error Message Header Parts

An Error Message MUST contain an Error Header Part.

Exchange Message Header Parts

2.4.1 Error Data Header Part

Contains descriptions of and references to one or more locations in a message where errors have been detected.

<EdNote> Need to describe how this works. Needs to cover reporting of errors in XML documents as well as other errors</EdNote>

3 Header Levels

The previous section described the full content of the various Header Parts in the Message Envelop. It is also possible to use subsets of the header messages in combination with subsets of the Message Types to support more simple types of interactions.

This section describes those alternative uses. It can vary from a simple RPC call to a full "business quality messaging" level of approach.

<EdNote> To be completed once the full headers become more stable <EdNote>

4 Template Document Exchanges

The sequence describes valid sequences for exchanging messages. It consists of two parts:

· a section that describes the various Message Types (see the description of the Message Header), and

· a section that describes how those message types may be used together in Template Document Exchanges to support different types of interactions.

4.1 Message Types

This section provides an overview of how Message Type can be used. The main benefit of having a Message Type in the header is that it allows the ebXML transport to check that the messages of an appropriate type have been returned within the expected timeframes. For example if a Request Message is sent with a field in the header indicating that an Acknowledgement is required, then, if an Acknowledgement Message is not returned within the required timescale then the ebXML transport can detect this and attempt recovery by, for example, resending the original message.

This means that the application need not be concerned about the reliable delivery of messages.

4.1.1 What is a Message Type

A Message Type contains information that can be used by the recipient of a message to determine how it should be handled and therefore what types of messages should be sent in return.

A message may be one of the following types:

· Normal Message

· Acknowledgement Message

· Error Message

Each of these is described below in more detail, however, the overall processing of a message is independent of the message type so this is described first.

4.1.2 Common Message Processing

<ED NOTE> Require a new diagram speaking to the current message types and description of their use to include subparagraphs </ED NOTE>

4.1.3 Descriptions of Message Types

This section describes the purpose of each Message Type in turn.

4.1.3.1 Normal Message

Normal Messages are sent to request that another party or server carry out a service or process of some kind. In more detail the messages that may result from processing a Normal Message are indicated in the diagram below: <ED NOTE> Need to update the diagram below </ED NOTE>

For services that can process a Normal Message very quickly, then the intermediate Acknowledgement may be omitted.

Examples of Normal Messages include:

· requesting the processing of a new purchase order

· requesting that a previous purchase order is changed

· requesting a refund of a payment as a result of a problem

· requesting the review of a legal document

· requesting information on the services a business provides.

4.1.3.2 Acknowledgement Message

An Acknowledgement Message may be sent as a response to any Message (apart from an Acknowledgement Message) to indicate that a Message has been received.

It's recommended that Acknowledgement Messages are only sent after the message that is being acknowledged has been saved in some kind of persistent storage as Acknowledgement Messages can be used, for example, by the sender of a message as evidence that the original message was received.

On the other hand, if an Acknowledgement Message is not received within the expected time, then it indicates that something has probably gone wrong somewhere and the sender can choose to try and recover by, for example, re-sending the original message.

Acknowledgement Messages are also useful if a service that is being requested takes a long time to run. Acknowledgements Messages are never sent in response to another Acknowledgement Message as otherwise an infinite exchange of messages could occur.

More details on the message that may be generated as a result of processing an Acknowledgement Message are indicated by the diagram below.

[image: image2.wmf]ebXML Aware Software Layer

OK

Application Layer

Acknowledge

-

ment

Check

Message

Headers

OK

XML Schema

or DTD

Error (Header)

Check

Payload

OK

Error (Payload)

Process

Message

OK

Get

Response

Address(

es

)

Error

Check

Message

Structure

Required Message

Optional Message

Save

Message

4.1.3.3 Error Message

An Error Message is a Message that reports on a problem in an earlier Message that prevents the earlier Message from being processed in a normal way. Examples of an Error Message include:

· an Error Message reporting that an XML document was invalid or did not conform to its XML schema

· an Error Message reporting a Transient Error that the Server processing a Message is busy and therefore the original Message should be resent at a later point in time

· an Error Message that reports on an error in the underlying transport protocol.

Error Messages contain Error Header Parts that indicate the nature of the error that has been found.

More details on the message that may be generated as a result of processing an Error Message are indicated by the diagram below.

[image: image3.wmf]ebXML Aware Software Layer

OK

Application Layer

Error

Acknowledgement

Check

Message

Headers

OK

XML Schema

or DTD

Error (Header)

Check

Payload

OK

Error (Payload)

Process

Message

OK

Get

Response

Address(

es

)

Error

Check

Message

Structure

Required Message

Optional Message

Save

Message

It is possible that an Error may be found in an Error Message which, in turn, also contains errors. This can result in an infinite loop. To avoid this, Error Messages are not sent, for errors found in Error Messages that are reporting errors in another earlier Error Message.

<ED NOTE> Definitions are moved to another document</ED NOTE>

5 Schemas, DTD Definitions and Examples

<EdNote>Note we will only define this section once the structure of the header parts are finalized (or nearly finalized) <EdNote>
5.1 XML Header DTD

<EdNote> Will contain an XML DTD version of the Header Parts whos structure is defined in this document</EdNote>

5.2 XML Header Schema Definition

<EdNote> Will contain an XSDL Schema version of the Header Parts whos structure is defined in this document</EdNote>

6 References

<EdNote>Needs to be completed</EdNote>

[1]
ebXML Transport, Routing and Packaging: Overview and Requirements document version x.x. Published xx April 2000

[2]
ebXML Transport, Routing and Packaging: Message Wrapper Specification version x.x. Published dd mmmm 2000

7 Acknowledgements

Contains a list of the individuals that have contributed to the spec <EdNote>Please volunteed names !!</EdNote>

8 Authors' Address

<EdNote> Will contain names, addresses, telephones & emails of authors </EdNote>

ebXML Message Header Specification v0-3.doc (25-April-2000)
6

[image: image4.png][image: image5.png]\QXML

