[image: image21.png]\QXML

ebXML Transport, Routing & Packaging
Strawman Message Header Specification

Working Draft 11-May-2000
This version:

ebXML Message Header Specification v0-32.doc
Latest version:

(URL to latest version)

Previous version:

(URL to previous version)

Editor:

David Burdett <david.burdett@commerceone.com>

Authors:

David Burdett <david.burdett@commerceone.com>

John Ibbotson <john_ibbotson@uk.ibm.com>

Contributors:

See Acknowledgements

Copyright statement

<EdNote> Whose do we put? IETF?? ebXML?? UN/CEFACT?? OASIS?? ... </EdNote>

Abstract

Contains an overview of the purpose of the specification and how it relates to other documents

Status of this Document

<EdNote>Main changes to the previous version are:

· provided definitions of the elements in the header parts for: Message Header, Message Routing Info and Message Routing History

· merged in separate documents that covered Message Types

· completely removed the Data Dictionary - the information is now contained within the definition of the Message Header

· temporarily the section that describes different header levels

</EdNote>

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

Table of Contents

31
Introduction

1.1
Message Headers
3
1.2
Relationship to other specifications
4
1.3
Specification Structure
4
2
Message Structure
5
2.1
Header Parts
6
2.1.1
Why Separate Header Parts
6
2.2
Message Header, Header Part
8
2.3
Message Manifest
17
2.4
Message Routing Information, Header Part
18
2.5
Message Routing History, Header Part
23
2.6
Message Type Dependent Header Parts
25
2.6.1
Status Header Part
26
2.6.2
Error Data Header Part
26
2.6.3
Authorization Data Header Part
27
3
Header Levels
27
4
Template Document Exchanges
27
4.1
Message Types
27
4.1.1
What is a Message Type
28
4.1.2
Common Message Processing
28
4.1.2.1
Get Response Address(es)
29
4.1.2.2
Save Message
29
4.1.2.3
Check Message Structure
30
4.1.2.4
Check Message Headers
30
4.1.2.5
Check Payload
30
4.1.2.6
Process Message
30
4.1.3
Descriptions of Message Types
31
4.1.3.1
One-Way Message
31
4.1.3.2
Request Message
31
4.1.3.3
Response Message
32
4.1.3.4
Acknowledgement Message
33
4.1.3.5
Checked OK Message
34
4.1.3.6
Error Message
34
4.1.3.7
Cancel Message
35
4.1.3.8
Exchange Message
36
4.2
Document Exchanges
38
5
Definitions
41
5.1
Documents, Parties, Messages and Document Exchanges
42
5.1.1
Overview
42
5.1.2
A Document
42
5.1.3
Party
42
5.1.4
Message
43
5.1.5
Message Header
43
5.1.6
Message Manifest
43
5.1.7
Message Routing Information
44
5.1.8
Digital Signature
44
5.1.9
Message Envelope
44
5.1.10
Message Types
44
5.1.10.1
One-Way Message
44
5.1.10.2
Request Message
44
5.1.10.3
Acknowledgement Message
44
5.1.10.4
Checked OK Message
44
5.1.10.5
Response Message
45
5.1.10.6
Exchange Message
45
5.1.10.7
Error Message
45
5.1.11
Document Exchange
45
5.1.11.1
One-Way Document Exchange
45
5.1.11.2
Simple Document Exchange
46
5.1.11.3
Multiple Round Trip Document Exchange
46
5.2
Services and Message Sets
46
5.2.1
Overview
46
5.2.2
Service
47
5.2.3
Sub-Service
47
5.2.4
Service Choreography
47
5.2.5
Application
48
5.2.6
Transaction
48
6
Security Considerations
48
7
Schemas, DTD Definitions and Examples
48
7.1
XML Header DTD
49
7.2
XML Header Schema Definition
49
8
References
49
9
Acknowledgements
49
10
Authors' Address
49

1 Introduction

This specification contains covers two main topics:

· Definitions of the content of Message Headers for use within ebXML

· Template Document Exchanges that define sequences for exchanging messages that can be used to build interactions with services supported by remote parties.

Message Headers are contained within an outer Message Envelope. The structure and format of the Message Envelope is defined separately [2].

1.1 Message Headers

A Message Header is an XML construct that contains the additional data that needs to be associated with the documents in a message so that they can be delivered to and successfully processed by a Party.

Template Document Exchanges define the sequence in which messages of different types are exchanged. Examples of Template Document Exchanges are:

· a One-Way Document Exchange which consists of sending a single message to a destination

· a Simple Document Exchange which consists of sending a Request Message that results in a Response Message being returned.

· a Multi-Round Trip Document Exchange which is similar to a simple Document Exchange except that additional Exchange Messages can be exchanged between the Request and the Response Messages and the Response Message can be sent by either part.

Variations of these Document Exchanges optionally provide:

· acknowledging receipt of a message by returning an Acknowledgment Message

· reporting the validitty of a message by sending either an Error Message or Completed Ok Message

· cancelling a Document Exchange by sending a Cancel a Message

1.2 Relationship to other specifications

This specification is one of a set of related specifications <EdNote> This list is the same as the recent email posted to the list. It is subject to review. </EdNote> These specifications cover:

· ebXML Messaging Overview - describes the relationship between the various ebXML specifications described below and how they are used in a compliant way with each other

· ebXML Message Header Specification - this specification,<EdNote> Also will defines how we handle requests, responses, message acks, cancel, error, etc and include state diagrams for each end.</EdNote>
· ebXML Message Envelope Specification - how to wrap header's and bodies in a MIME wrapper. This will be extended in the future to describe how to wrap headers and bodies in an XML enevelope, although the XML Envelope may be developed as a separate specification. Specifications are provided to cover:

· ebXML Messaging over HTTP - how to send ebXML Messages using HTTP or HTTPS

· ebXML Messaging over SMTP - how to send ebXML Messages using SMTP

· supplements for other protocols are contained in separate documents

· ebXML Reliable Messaging Specification - how to achieve robust reliable once-only delivery of message in a vendor neutral, transport independent way <EdNote>Not sure if this should include being proactive in efforts to recover from failure </EdNote>
· ebXML Messaging Security and Signature Specification - this will cover:

· how to use S/MIME with ebXML Messages

· how to use PGP with ebXML Messages

· how to use IETF/W3C XML Digital Signatures with ebXML Messages

· ebXML Common Message sets contains specifications of commonly used message sets that are applicable to many situations:
· ebXML Message set Status Inquiry Specification - how to inquire on the current status of a message set

· ebXML Service Availability Specification - how to determine if a Service is up and running

· ebXML Messaging Discovery Specification - how to determine the parameters associated with a Service from the ebXML Messaging perspective.

· ebXML Publish & Subscribe Specification - how to do Publish and Subscribe securely using any of the above<EdNote>Not sure if this is in or out of scope for ebXML</EdNote>
· ebXML Messaging Audit Trail Specification - how to use ebXML to create audit trails of the messages exchanged during a message set.

1.3 Specification Structure

The remainder of this specification contains:

· list of sections and their purpose ... to be completed

2 Message Structure

The structure of a message is illustrated by the diagram below. Change picture to add Message Manifest
<ED NOTE> Change Body to Payload in diagram. Perhaps the Message Envelope should be identified as the ebXML Envelope</ED NOTE>
[image: image1.wmf]Transport Envelope

Message Envelope

Header

Header

Part

Header

Part

Header

Part

...

Body

Message

Body Part

Message

Body Part

Message

Body Part

...

Message

Header

Message

Routing Info

Message

Routing

History

Secure

Timestamp

Signatures

Errors

A Message Consists of:

· an outer Transport Envelope, such as HTTP or SMTP, that wraps,

· a transport independent Message Envelope, for example MIME (see ebXML Message Envelope Specification) that contains the two main parts of the Message itself by wrapping:

· a Header with one or more header parts inside, (the subject of this specification), and

· a Body that is the real payload of the Message

In general, separate header parts are used where:

· different software is likely to be used to generate that header part,

· the structure of the header part might vary independently of the other header parts, or

· the data contained in the header part may need to be digitally signed separately from the other header parts.

2.1 Header Parts

Using this principle, the following main header parts have been identified:

· a Message Manifest -xxxdefine

· a Message Header header part, that contains the additional data that needs to be associated with the Documents in a Message so that they can be sent to and successfully processed by a Party. This data is typically set by the application that determines that a message needs to be sent. The data remains the same no matter what method or protocol is used to transport the message

· Message Routing Info header part that indicates the destination that will be or has been taken by a Message in order to reach its next destination. This changes whenever a message is sent or resent by a different route or when it is transported between its orgin and its ultimate destination in a series of hops

· Message Routing History header part. This is only required when a message is travelling through mutliple hops. It contains copies either:

· earlier Message Routing Info header parts that were used to transport the message, or

· Message Receipt Information header parts that records the receipt of a Message at a destination.

· Message Type Dependent Headers header part. These are header parts that may be present depending on the Message Type of the header (see section 2.6). They are:

· a Status Header Part

· an Error Data Header Part, and

· an Authorization Data Header Part.

· Secure Timestamp header part. This contains data that can be used to prove that an event of some kind happened at a particular time. Examples of events include:

· creating a message header

· sending a message

· receiving a message.

· Signature header parts that contain one or more digitally signatures of data in the Header, the Message Body or elsewhere, and

· optional Other Message Headers that may need to be associated with the Message that are implementation specific.

Note that the Message Header header part is the only header part that is present in every Message. Later parts of this specification describe the conditions where the other header parts MAY be used.

2.1.1 Why Separate Header Parts

The following provides explanations as to why these header parts have been defined separately.

Message Routing Information is held separately from other documents in the Header, such as the Message Header, since:

· it would break any digital signature on those documents as Message Routing Information is changed each time the Message is forwarded to a new URL or is resent

· it makes it easier to separate the processing logic that determines the logical destination (e.g. the business application) from the physical destination. As a result business applications need not be aware of changes to network designs that result in changes to URLs to which Messages are sent,

· if a particular URL is not accepting Messages for some reason, then an alternative URL may be used without invalidating any existing signatures on the other header parts

Message Routing History is held separately since:

· it is only required on messages that traverse multiple hops, and

· it makes it easier to distinguish between the Message Routing information that is current from information that is historical.

Secure Timestamp is held separately since it optional, and its structure is defined by separate standards. <EdNote> What standards exist that we could use? Do we need to specify how to use a standard to do secure timestamps. </EdNote>

Signatures are held separately from the other header parts since signatures cannot sign themselves, and it makes it easier for software processing the header to automatically check the signature and therefore determine the authenticity of the sender of the message and whether or not the data has changed. As a result the burden of checking the signature can be removed from the application or other process that is the ultimate destination for the message.

Descriptions of each Header Part and their element content follow.
2.2 Message Header, Header Part

The following is an overview of each of the elements in a Level 4 Message Header.

All the information in the Message Header is typically provided by a Business Application. It is held in a separate header part so that it may be digitally signed and its signature preserved, no matter where the message is routed.

	Message Header Element
	Outline Description

	1) Message Header Version.
	Contains the version of the header. This will follow whatever ebXML standard for versioning is adopted

	2) Message Type (enumerated list)
	Contains the type of the message. See separate documentation for details. Valid values are:

· Normal
·
·
·
· Acknowledgement
·
· Error
·
·
The Message Type is to let ebXML aware software provide reliable messaging on behalf of an application

	3) Service Type (string)
	Identifies the business service interface that should act on the payload in the message.
·
·

·
·
Service Types shall be unique within the domain in which they are being used. URN's may be considered suitable for this purpose.
<ED NOTE> Need to coordinate with the Business Process Group to align with naming and semantics with the business model. </ED NOTE>

	4) Intent (string)
	Intent specifies the reason or intention for sending a message.
·
·
·
·
·
·
·
·

Intent shall be unique within a Service Type.
<ED NOTE> Need to coordinate with the Business Process Group to align with naming and semantics with the business model. </ED NOTE>

	5) Message Set Data
	Message Set Data contains information that describes a set of related Messages. All the data in this element is identical in all the messages in a Message Set. If a digital signature on a message signs the Message Set Data and some other data on the message, it is possible to prove that messages are related. In this way an audit trail of a Message Set can be provided.

	a) Message Set Id
	This is a globally unique identifier for the Message Set.

	b)
	
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·
·

·
·

	c)
	

	d)
	
·
·

	e)
	
·
·

	6) Message Data
	Message Data contains information that describes an individual Message.

	a) Message Identifier (string)
	This is a globally unique identifier for an individual Message.

	b) Message Creation Timestamp
	This is the time that the Message Header was created.

	c) Ref To Message Identifier
	If a message is created as the result of processing a previous message, then Ref To Message Identifier contains the Message Identifier of the message that was processed. Otherwise, the value is set to “Not Applicable”.

	d)
	

	e)
	
·
·
·
·
·

	7) Transport Service Level Agreement Id
	Identifies the transport level Service Level Agreement to be used when sending and receiving this message. Defaults to an ebXML standard Service Level Agreement for a Transport Protocol.

	8) From
	Identifies the Party sending the message.

	a) Party Id
	The identifier of the sending Party.

	i) Address Context (optional)
	The context used to resolve the sending Party Address.

	ii) Address
	The address of the sending Party. <ED NOTE> Need to describe how address and address context are used in an explanitory note in the data dictionary. </ED NOTE>

	b)
	

	c)
	

	9) To
	Identifies the Party receiving the message.

	a) Party Id
	The identifier of the receiving Party.

	i) Address Context (optional)
	The context used to resolve the receiving Party Address

	ii) Address
	The address of the receivng Party.

	b)
	

	c)
	

	10) Reliable Messaging Info
	

	a) Guaranteed Delivery
	Indicates the degree of reliablity of delivery. Valid values:

· Unspecified (default)

· AtMostOnce

	b)
	

	i)
	

	ii)
	

	iii)
	

2.3 Message Manifest

This shall be the first header part in the ebXML Header. It identifies the various header parts and payloads contained in the ebXML message envelope.
	11) Message Manifest .
	This contains pointers to the other header parts that are present as well as the payload(s) of the message.

	a) Document Reference
	Contains a reference to an individual header part or payload(s). This value shall occur one or more times.

	i)
	

	ii)
	

	iii) Document Identifier (may be a URL)
	Identifier for the header part or payload. This identifier shall be unique within the Message Id (it may also be globally unique). The purpose of the identifier is to make it easier to directly extract a particular header part or payload.

	iv) Document Label (optional)
	. A textual description of the header part or payload referenced by the Document Identifier

2.4

	Message Routing Information Element
	Outline Description

	12)
	

	a)
	

	b)
	

	i)
	

	ii)
	

	c)
	

	d)
	

	e)
	

	13)
	
·
·
·
·
·
·
·

·
·
·
·

	a)
	

	b)
	

	14)
	

	a)
	

	i)
	
·
·
·

	b)
	

	i)
	

	c)
	

	i)
	

	d)
	

	i)
	

	e)
	

	i)
	

	15)
	
·
·
·
·

	a)
	

	b)
	

	c)
	

	d)
	

2.5

·
·

	
	

	16)
	

	a)
	

	i)
	

	b)
	

	i)
	

	ii)
	

	iii)
	

	iv)
	

	v)
	

2.6 Message Type Dependent Header Parts

The Message Types that are allowable are defined in section 5.1.10 Message Types. Depending on the Message Type, different header parts may be present in the Header in addition to those described in section 2.1.

The Message Type Dependent Header Parts are:

· a Status Header Part, that indicates the status of the execution of a Message Set or Document Exchange
· an Error Header Part that indicates one or more errors in a Message
· an Authorization Data Header Part that contains data that indicates:

· who or what is authorizing a Service, and

· Status Header Part(s) that prove that earlier Message Sets or Document Exchanges completed sucessfully

The Message Type Dependent Header Parts that may be present in a Message of a particular type are described below.

Normal Message Header Parts

A Normal Message MAY also contain an Authorization Data Header Part.
Acknowledgement Message Header Parts

An Acknowledgement Message MUST NOT contain any additional Message Type dependent header parts.
Error Message Header Parts

An Error Message MUST contain an Error Header Part.

Exchange Message Header Parts

·
·
·
·
·
·
·

·
·
·
·
·
·
·

2.6.1 Error Data Header Part

Contains descriptions of and references to one or more locations in a message where errors have been detected.

<EdNote> Need to describe how this works. Needs to cover reporting of errors in XML documents as well as other errors</EdNote>

2.6.2

·
·

3 Header Levels

The previous section described the full content of the various Header Parts in the Message Envelop. It is also possible to use subsets of the header messages in combination with subsets of the Message Types to support more simple types of interactions.

This section describes those alternative uses. It can vary from a simple RPC call to a full "business quality messaging" level of approach.

<EdNote> To be completed once the full headers become more stable <EdNote>

4 Template Document Exchanges

The sequence describes valid sequences for exchanging messages. It consists of two parts:

· a section that describes the various Message Types (see the description of the Message Header), and

· a section that describes how those message types may be used together in Template Document Exchanges to support different types of interactions.

4.1 Message Types

This section provides an overview of how Message Type can be used. The main benefit of having a Message Type in the header is that it allows the ebXML transport to check that the messages of an appropriate type have been returned within the expected timeframes. For example if a Request Message is sent with a field in the header indicating that an Acknowledgement is required, then, if an Acknowledgement Message is not returned within the required timescale then the ebXML transport can detect this and attempt recovery by, for example, resending the original message.

This means that the application need not be concerned about the reliable delivery of messages.

4.1.1 What is a Message Type

A Message Type contains information that can be used by the recipient of a message to determine how it should be handled and therefore what types of messages should be sent in return.

A message may be one of the following types:

· Normal Message

·
·
· Acknowledgement Message

·
· Error Message

·
·
Each of these is described below in more detail, however, the overall processing of a message is independent of the message type so this is described first.

4.1.2 Common Message Processing

Once a message is received it needs to be processed before a response can be generated where one is required. These steps are similar for all message types. The figure and explanation below describe the processing of a Request Message to illustrate what these steps are.

The Transport and Message Layer blocks in the diagram provide ebXML compliant value-add services. They allow the message structure (both envelope and headers) to be checked against the ebXML standards and appropriate acknowledgements or errors to be generated if the message is invalid. This standardized support for the message structure is then removed as an overhead from the business application layer.

[image: image2.wmf]ebXML Aware Software Layer

Application Layer

Request

Save

Message

Acknowledgement

Check

Message

Headers

OK

XML Schema

or DTD

Error (Header)

Check

Payload

OK

Error (Payload)

Payload Checked OK

Response

Process

Message

OK

Get

Response

Address(

es

)

OK

Error

Check

Message

Structure

Message Checked OK

Required Message

Optional Message

In the diagram above, the basic idea is that:

1) The Request Message is sent from one party to another, then

2) The second party processes the Request Message and creates another message that needs to be returned, then

3) The second Party sends the data back in a Response Message.

All the messages in-between are optional and can be used to indicate either:

· errors in the message or that

· an intermediate stage of processing of the message has completed.

Each step is described below.

4.1.2.1 Get Response Address(es)

The first step is to identify the return address(es) to use for sending messages back. This is required since there are optional fields in the Message Routing Info header part (e.g. the Acknowledgement Response Address and Error Response Address) that indicate where each type of message should be sent. The benefits of alternative return addresses include:

· allowing different processes on a server to handle different types of messages

· allowing load balancing by spreading return messages over a number of different locations

Note that default values apply for the return address if the return address for a particular message type is not present. See the Data Dictionary for the details.

4.1.2.2 Save Message

Once the response address(es) have been found, the message MAY be saved and, if the incoming message contains an Acknowledgement Message Required field, an Acknowledgement Message should be sent back to the sender. Some of the reasons for sending Acknowledgement Messages are:

· to provide evidence to the sender of a message that it has been received. If the Acknowledgement Message is also digitally signed then it may indicate non-repudiation of receipt

· to stop the sender of the original message from starting recovery if the original send of the message "times out"

· to provide confidence to the sender of the original message that it will be processed. For example, suppose that the business process that generates a business response takes 2 days to complete. If there is no intermediate message sent between the time the Request Message is sent and the Response Message is returned, then the sender of the Request Message will not know if the Request Message arrived and is being processed or was lost in transmission. However if an Acknowledgement Message is sent, the sender of the original Request Message knows immediately that it was received even though it has not yet been processed.

Some of the main reasons for saving Messages include:

· so that you can check whether a claim that a message was received is valid

· to identify duplicate messages and therefore make sure that they are not processed twice.

Note that the saving a message is optional since some types of Messages will not need to be saved. This is particularly the case where:

· re-processing a duplicate of a message does not cause processing problems, or

· you do not need to be able to provide non-repudiation of receipt.

4.1.2.3 Check Message Structure

Check Message Structure checks that the outer wrapper of the Message is valid and contains the required parts within it. Specifically it will check that:

· any MIME message that is present is correctly formed

· XML headers are present and in the correct position

· any Payloads can be successfully extracted from the MIME message

If errors are found, then an Error Message is sent back to the sender of the message or the address specified in the Message Routing Info header part.

4.1.2.4 Check Message Headers

Once the overall structure of the Message is checked as being OK, the individual Header Parts within the Message can be checked. This involves:

· checking the structure of the headers against the appropriate DTD or Schema Language definitions,

· checking that the headers contain valid data. This includes:

· checking the validity of the data in each header part

· cross checking one header against another. This includes, checking digital signatures and checking that the Message Manifest is correct.

If errors are found then an Error Message is sent back to the sender of the message or the address specified in the Message Routing Info header part. Alternatively, if the message header is OK and no errors have been found then a Message Checked OK message may be sent in return if one has been requested.

4.1.2.5 Check Payload

Once the overall message is validated as correct, the Payload can be validated. For XML payloads this will involve checking that data against a DTD or schema as well as some application specific checks that may need to be made. This may result in one or more error conditions being identified that need to be reported back to the sender of the original message.

If errors are found then one error message is sent even though it may contain references to multiple different errors. Whether multiple errors or a single error is reported is an implementation decision. <EdNote> Do we want to allow multiple separate error messages to be sent back. </EdNote>

Alternatively, if the message is OK and no errors have been found then a Payload Checked OK message may be sent in return if one has been requested.

The reasons for sending a Payload Checked OK Message is similar to the reasons for sending an Acknowledgement in that it allows an intermediate check on the processing of the original message.

4.1.2.6 Process Message

Once the Message has been completely validated it can be processed by the application, and, if necessary a business response generated in return.

4.1.3 Descriptions of Message Types

This section describes the purpose of each Message Type in turn.

4.1.3.1 One-Way Message

A One-Way Message is a Message sent from one party to another. No business or application response is expected for One-Way Messages. In this sense they are "fire and forget" messages. Note however that, you can, on request, get acknowledgements of One-Way Messages as well as have errors reported in them if their syntax or content is invalid in some way.

More detail is provided in the following figure:

[image: image3.wmf]ebXML Aware Software Layer

OK

Application Layer

One-Way

Acknowledgement

Check

Message

Headers

OK

XML Schema

or DTD

Error (Header)

Check

Payload

OK

Error (Payload)

Process

Message

OK

Get

Response

Address(

es

)

Error

Check

Message

Structure

Required Message

Optional Message

Save

Message

Example uses of One-Way messages are:

· a broadcast message to distribute catalogue update information

· the "publish" part of a publish and subscribe

4.1.3.2 Request Message

Request Message are sent to request that another party or server carry out a service or process of some kind. It differs from a One-Way Message in that a Response Message (see below) that contain a business response is always expected in return.

As for One-Way Messages, Request Messages may also, on request, be acknowledged as well as have errors reported in them. Messages may also be sent to indicate that the message has been checked and is valid. In more detail the messages that may result from processing a Request Message are indicated in the diagram below:

[image: image4.wmf]ebXML Aware Software Layer

Application Layer

Request

Save

Message

Acknowledgement

Check

Message

Headers

OK

XML Schema

or DTD

Error (Header)

Check

Payload

OK

Error (Payload)

Payload Checked OK

Response

Process

Message

OK

Get

Response

Address(

es

)

OK

Error

Check

Message

Structure

Message Checked OK

Required Message

Optional Message

For services that can process a Request Message very quickly, then the intermediate Acknowledgement and Checked OK messages may be omitted. In this case, receipt of the Response Message also indicates that the original Request Message was received.

Examples of Request Messages include:

· requesting the processing of a new purchase order

· requesting that a previous purchase order is changed

· requesting a refund of a payment as a result of a problem

· requesting the review of a legal document

· requesting information on the services a business provides.

4.1.3.3 Response Message

A Response Message contains the results of carrying out the service indicated by a Request Message. It contains a combination of:

· status information on whether or not the processing of the Request Message was successful, and

· a service/process dependent record of the results of the service. This is usually an XML document of some kind

Note that Response Messages are different from Error Messages and Completed OK Messages (see below), in that they must only be generated for Request Messages that have passed all validation checks.

More details on the message that may be generated as a result of processing a Response Message are indicated by the diagram below.

[image: image5.wmf]ebXML Aware Software Layer

OK

Application Layer

Response

Acknowledgement

Check

Message

Headers

OK

XML Schema

or DTD

Error (Header)

Check

Payload

OK

Error (Payload)

Process

Message

OK

Get

Response

Address(

es

)

Error

Check

Message

Structure

Required Message

Optional Message

Save

Message

Examples of Response Messages include:

· an acknowledgement of receipt of a Purchase Order

· an Invoice generated as a result of processing a Purchase Order

· a receipt for a payment that was made

· an opinion on a legal document that was received

· a description of the services provided by a business

4.1.3.4 Acknowledgement Message

An Acknowledgement Message may be sent as a response to any Message (apart from an Acknowledgement Message) to indicate that a Message has been received.

It's recommended that Acknowledgement Messages are only sent after the message that is being acknowledged has been saved in some kind of persistent storage as Acknowledgement Messages can be used, for example, by the sender of a message as evidence that the original message was received.

On the other hand, if an Acknowledgement Message is not received within the expected time, then it indicates that something has probably gone wrong somewhere and the sender can choose to try and recover by, for example, re-sending the original message.

Acknowledgement Messages are also useful if a service that is being requested takes a long time to run. For example, if the Response Message that corresponds to a Request Message is not expected for two days, then sending out an Acknowledgement as soon as the Request Message is received should re-assure the sender of the Request Message that at least the Request Message got there.

Acknowledgements Messages are never sent in response to another Acknowledgement Message as otherwise an infinite exchange of messages could occur.

More details on the message that may be generated as a result of processing an Acknowledgement Message are indicated by the diagram below.

[image: image6.wmf]ebXML Aware Software Layer

OK

Application Layer

Acknowledge

-

ment

Check

Message

Headers

OK

XML Schema

or DTD

Error (Header)

Check

Payload

OK

Error (Payload)

Process

Message

OK

Get

Response

Address(

es

)

Error

Check

Message

Structure

Required Message

Optional Message

Save

Message

4.1.3.5 Checked OK Message

A Checked OK Message may be sent in response to a Request Message to indicate that the content of the Request Message has been validated and no errors were found. They are of two types:

· Message Checked OK, and

· Payload Checked OK

A Message Checked OK message is sent if the Message Structure and Message Header is correct. A Payload Checked OK message is sent if the Payload(s) are correct. More detail on the

More details on the message that may be generated as a result of processing a Checked OK Message are indicated by the diagram below.

[image: image7.wmf]ebXML Aware Software Layer

OK

Application Layer

Header or

Payload

Checked OK

Acknowledgement

Check

Message

Headers

OK

XML Schema

or DTD

Error (Header)

Check

Payload

OK

Error (Payload)

Process

Message

OK

Get

Response

Address(

es

)

Error

Check

Message

Structure

Required Message

Optional Message

Save

Message

4.1.3.6 Error Message

An Error Message is a Message that reports on a problem in an earlier Message that prevents the earlier Message from being processed in a normal way. Examples of an Error Message include:

· an Error Message reporting that an XML document was invalid or did not conform to its XML schema

· an Error Message reporting a Transient Error that the Server processing a Message is busy and therefore the original Message should be resent at a later point in time

· an Error Message that reports on an error in the underlying transport protocol.

Error Messages contain Error Header Parts that indicate the nature of the error that has been found.

More details on the message that may be generated as a result of processing an Error Message are indicated by the diagram below.

[image: image8.wmf]ebXML Aware Software Layer

OK

Application Layer

Error

Acknowledgement

Check

Message

Headers

OK

XML Schema

or DTD

Error (Header)

Check

Payload

OK

Error (Payload)

Process

Message

OK

Get

Response

Address(

es

)

Error

Check

Message

Structure

Required Message

Optional Message

Save

Message

It is possible that an Error may be found in an Error Message which, in turn, also contains errors. This can result in an infinite loop. To avoid this, Error Messages are not sent, for errors found in Error Messages that are reporting errors in another earlier Error Message.

4.1.3.7 Cancel Message

A Cancel Message is used to indicate that, if possible, an earlier Request Message should not be processed.

Errors can occur if:

· the Request Message has already been completely processed (and a Response Message produced), or has reached a stage where processing can no longer be stopped

· Cancel Messages are simply not supported by the Service

This means that Cancel Messages should not be sent if a Response Message or Error Message has already been received.

If a Cancel Message is successfully processed, then a Response Message is generated with a status of Cancelled.

More details on the message that may be generated as a result of processing a Cancel Message are indicated by the diagram below.

[image: image9.wmf]ebXML Aware Software Layer

OK

Application Layer

Cancel

Acknowledgement

Check

Message

Headers

OK

Error (Header)

Check

Payload

OK

Error (Payload)

Payload Checked OK

Response

Process

Message

OK

Get

Response

Address(

es

)

Error

Check

Message

Structure

Message Checked OK

Required Message

Optional Message

Save

Message

Note that either an Error Message or a Response Message Must be sent in return.

4.1.3.8 Exchange Message

An Exchange Message is a Message that is sent between one Party and another after the sending of the initial Request Message and before the sending of the final Response Message. Examples of Exchange Messages include:

· intermediate messages that are part of a Payment Protocol

· a counter offer to an offer made as part of a negotiation.

An example of a Message Set of the Message Flows that involves an Exchange Message is shown in the figure below.

[image: image10.wmf]Party 2

Party 1

Request Message

Exchange Message

Save,

Check,

Process

Save,

Check,

Process

Exchange Message

Save,

Check,

Process

Save,

Check,

Process

Exchange Message

... repeat sending of Exchange Messages until either party 2 sends a response or ...

Save,

Check,

Process

Save,

Check,

Process

Response Message

... Party 1 sends a Response Message

Save,

Check,

Process

Response Message

Save,

Check,

Process

An Exchange Message differs from a Response Message the receipt of an Exchange Message indicates that more data needs to be exchanged between the parties involved before they can determine whether the processing of the original Request Message will be successful.

Only when one or other of the Parties involved know that the exchange of messages should be brought to an end do they send a Response Message that indicates the end status of the exchange of messages.

As with other types of messages, errors and acknowledgements can occur for Exchange Messages. These are described in the diagram below.

Note that in the above diagram, the Request, Exchange and Response messages form part of a wider set of interactions between Party 1 and Party 2. These interactions will be part of a business process between the parties such as an RFQ or part of a Supply Chain Management scenario. The coordination of these interactions may be governed by some form of Trading Partner Agreement between the parties which is referred to as a choreography in the ebXML header specification.

[image: image11.wmf]ebXML Aware Software Layer

OK

Application Layer

Exchange

Acknowledgement

Check

Message

Headers

OK

XML Schema

or DTD

Error (Header)

Check

Payload

OK

Error (Payload)

Payload Checked OK

Response

or

Exchange

Process

Message

OK

Get

Response

Address(

es

)

Error

Check

Message

Structure

Message Checked OK

Required Message

Optional Message

Save

Message

Note that if an Exchange Message is received, then, if no errors are found, then either another Exchange Message or a Response Message must be sent in return.

4.2 Document Exchanges

<EdNote>This section is not yet complete. Currently it just contains some sample diagrams that illustrate the sequences in which documents can be exchanged. It needs to be expanded to include:

· rules on how to use each type of message with each other

· example usage of, for example: reporting errors, canceling transactions, exchange transactions.

<EdNote>

[image: image12.wmf]Party 2

Party 1

One Way Message

Check,

Process

Figure 1 One-Way Message

[image: image13.wmf]Party 2

Party 1

One Way Message

Save,

Check,

Process

Figure 2 One-Way Message with Save

[image: image14.wmf]Party 2

Party 1

Request Message

Checked OK Message

Save,

Check

Save,

Check,

Process

Process

<EdNote>This should say one-way message</EdNote>

Figure 3 One-Way Message with Checked OK

[image: image15.wmf]Party 2

Party 1

Request Message

Response Message

Save,

Check,

Process

Save,

Check,

Process

Figure 4 Simple Document Exchange

[image: image16.wmf]Party 2

Party 1

Request Message

Acknowledgement Message

Save

Check,

Process

Response Message

Save,

Check,

Process

Save,

Check,

Process

Figure 5 Simple Document Exchange with Acknowledgement of Request

[image: image17.wmf]Party 2

Party 1

Request Message

Acknowledgement Message

Save

Check,

Process

Response Message

Acknowledgement Message

Save

Check,

Process

Save,

Check,

Process

Save,

Check,

Process

Figure 6 Simple Document Exchange - with Acknowledgement of both Request and Response

[image: image18.wmf]Party 2

Party 1

Request Message

Acknowledgement Message

Save

Process

Response Message

Checked OK Message

Check

Save,

Check,

Process

Save,

Check,

Process

Save,

Check,

Process

Figure 7 Simple Document Exchange with Acknowledgement of Request and Checked OK Messages

[image: image19.wmf]Party 2

Party 1

Request Message

Acknowledgement Message

Save

Checked OK Message

Check

Save

Acknowledgement Message

Save,

Check,

Process

Save,

Check,

Process

Process

Response Message

Check,

Process

Save

Acknowledgement Message

Save,

Check,

Process

Check,

Process

Figure 8 Simple Document Exchange with Checked OK and every message acknowledged

[image: image20.wmf]Party 2

Party 1

Request Message

Acknowledgement Message

Save

Error Message

Check

Save,

Check,

Process

Save,

Check,

Process

Figure 9 Simple Document Exchange with an Error in the Request Message

5 Definitions

<EdNote> This section contains mildly updated versions of the definitions contained in the TP&R Overview and Requiremetns document</EdNote>

The following are a list of definitions of the terms associated with the transport of messages over the Internet.

It is split into two sections:

· Documents, Parties, Messages and Document Exchanges, and

· Services and Message Sets

Words or phrases that are defined elsewhere are highlighted in italics.

5.1 Documents, Parties, Messages and Document Exchanges

5.1.1 Overview

This section describes how Parties, such as buyers and suppliers, customers and merchants, can transmit Documents contained in Messages in order to request execution of Services.

All the Documents and other data in a Message are contained within an outermost Message Envelope.

A Message can optionally include Digital Signatures so that:

· the identity of the Party sending the Message can be authenticated

· any changes to the message and the documents they contain can be detected.

Services are requested by sending one or more Documents in a Request Message to a Party who then:

· processes the Request Message by carrying out a Service and

· optionally generates a Response Message to indicate the result.

At a minimum a Document Exchange consists of a Request Message and an optional Response Message although there might be additional Exchange Messages between the Request Message and the Response Message.

Error Messages are used to report permanent or transient problems or errors in a Message.

More detail is provided below.

5.1.2 A Document

A Document is any data that can be represented in a digital form.

Examples of Documents include:

· a set of XML Elements

· an XML Document

· an HTML Document

· a word processing file

· an Adobe Acrobat PDF file

· a binary file

· part of larger document.

5.1.3 Party

A Party is a company, organization or individual or other entity that can generate, receive or relay Documents.

Examples of a Party include:

· a Merchant

· a Customer

· a Lawyer

· a Bank

· a government department or agency

· an intermediary or agent

· a software agent

A Party is also used to refer to systems or servers that are carrying out Services or processes on behalf of a Party.

5.1.4 Message

A Message is data that is sent from one Party to another.

All the data in a Message is contained within a Message Envelope.

A Message consists of a Message Header and a Message Body
Examples of a Message include:

· a Purchase Order that is sent by a buyer to a supplier

· an Invoice that is sent by the supplier back to the buyer

· a request to make a payment of $50 sent to a Credit Card acquirer

· the authorization received from a Credit Card acquirer as a result of making a payment

· Status indicating the success or failure of a Service

5.1.5 Message Header

A Message Header is an XML construct that contains the additional data that needs to be associated with the Documents in a message so that they can be sent to and successfully processed by a Party.

5.1.6 Message Manifest

The Message Manifest contains references to the other documents, apart from the Message Routing Information document, that are contained within the same Message Envelope.

The purpose of the Message Manifest is to facilitate locating and validating that all required Documents contained within the Message Envelope are present.

Examples of the types of documents that might be referenced by a Message Manifest include:

· a Purchase Order

· a Purchase Order and a picture of the requested goods

· a Purchase Order and a digital signature

5.1.7 Message Routing Information

Message Routing Information contains data that indicates the path that should be or was taken by a Message in reaching its ultimate destination.

5.1.8 Digital Signature

A Digital Signature is a cryptographic signature over
 data contained in a Message, or elsewhere that are addressable via [URI]s, that permits the authenticity of the signer of the data to be determined, and helps detect if the data in the Message has changed.

5.1.9 Message Envelope

A Message Envelope is the outermost container for a Message. It can be such things as:

· an XML Document, or

· a multi-part MIME message

5.1.10 Message Types

Messages may be of several different types. These are described below.

5.1.10.1 One-Way Message

A One-Way Message is a Message sent from one party to another. The receiving Party MAY only respond back to the From Party with either a Message Acknowledgement and, if there is an error, an Error Message.
5.1.10.2 Request Message

A Request Message is a Message sent from one Party to a another Party's Service with the intent that the other Party act upon the data in the Request Message by carrying out the Service.

The results of processing the Request Message MUST be included in a Response Message that is sent back to the sender of the previous Message.

5.1.10.3 Acknowledgement Message

An Acknowledgement Message may sent as a response to any Message (apart from an Acknowledgement Message) to indicate that the Message has been received
.

5.1.10.4 Checked OK Message

A Checked OK Message may be sent in response to a Request Message to indicate that the content of the Request Message has been validated and no errors were found. A Checked OK Message MUST be sent after any Acknowledgement Message that was sent.

5.1.10.5 Response Message

A Response Message is a Message that is generated by the Service that received a Request Message. It is produced as a result of carrying out the requested Service. It is the last Message in a Document Exchange unless the Response Message contains errors.

Response Messages are sent back to the sender of the Request Message.

5.1.10.6 Exchange Message

An Exchange Message is a Message that is sent between one Party and another after the sending of the initial Request Message and before the sending of the final Response Message.

Examples of Exchange Messages include:

· intermediate messages that are part of a Payment Protocol

· a counter offer to an offer made as part of a negotiation.

5.1.10.7 Error Message

An Error Message is a Message that reports on a problem in an earlier Message that prevents the earlier Message from being processed in a normal way.

Examples of an Error Message include:

· an Error Message reporting that an XML document was invalid or did not conform to its XML schema

· an Error Message reporting a Transient Error that the Server processing a Message is busy and therefore the original Message should be resent at a later point in time

· an Error Message that reports on an error in the underlying transport protocol.

5.1.11 Document Exchange

A Document Exchange is a generic term for either a:

· a One-Way Document Exchange,

· a Simple Document Exchange, or

· a Multiple Round Trip Document Exchange.

5.1.11.1 One-Way Document Exchange

A One-Way Document Exchange consits of:

· a One-Way Message sent from one Party to a second Party, followed by

· an optional Acknowledgement Message sent by the second party back to the first party, followed by

· an optional Error Message if an error was detected in the One-Way Message
Examples of a One-Way Document Exchange include:

· a supplier sending catalog updates to their buyers

· xxx

5.1.11.2 Simple Document Exchange

A Simple Document Exchange consists of:

· a Request Message sent from one Party to a second Party, followed by

· an optional Acknowledgement Message sent by the second party back to the first party, followed by

· an optional Error Message if an error was detected in the Request Message, or

· an optional Checked OK Message, if no errors were detected that is sent by the second party back to the first party followed by

· a Response Message that is returned as a result of processing the Request Message.

Examples of instances of a Simple Document Exchange include:

· a Purchase Order sent by a buyer to a seller and the acknowledgement from the seller of its receipt

· a Purchase Order sent by a buyer to a seller and the Invoice that is sent back as a result of fulfilling the order

· sending a document for review by a lawyer followed by the legal opinion that is sent back as a result

5.1.11.3 Multiple Round Trip Document Exchange

A Multiple Round Trip Document Exchange consists of:

· a Request Message sent from one Party to a second Party, followed by

· a series of Exchange Messages that are exchanged between the two Parties until finally

· the either the first or the second Party generates and sends a Response Message back to the other Party.

Examples of Multiple Round Trip Document Exchanges include:

· the exchange of messages required to make a payment using payment method protocols such as [SET] or [Mondex]

· the exchange of messages required to negotiate an agreement on terms and conditions.

5.2 Services and Message Sets

5.2.1 Overview

A Service is a process that can be carried out by a Party. It is implemented by either a Document Exchange or a set of Sub-Services. Each Sub-Service is a Service in its own right. So, at the lowest level, all Services are implmented in terms of a Document Exchange.

The dependencies between the Sub-Services in a Service are described in a Service Choreography.

An instance of the execution of a Service is called a Message Set.

More detail is provided below.

5.2.2 Service

A Service is a process that can be carried out by a Party as a result of receiving a Request Message or One-Way Message that requests the execution of that Service.

A Service can consist of either:

· ​a Document Exchange, or

· a set of Sub-Services
Examples of a Service include:

· a Purchasing Service that enables a customer to purchase goods on-line

· an Order Processing Service that processes an Order and generates a response as a result

· a Payment Service that accepts a payment and provides a receipt

· a Fulfillment Service that fulfills an order at the request of a Merchant.

5.2.3 Sub-Service

A Sub-Service is a Service that is executed at the request of and as part of another Service.

Examples of Sub-Services include:

· a payment service that occurs as part of a purchase

· a tax calculation service that calculates the tax due as part of an order processing service.

5.2.4 Service Choreography

A Service Choreography is a description of the dependencies that control the sequence and choices that determine which Sub-Services are executed when carrying out a Transaction.

The Sub-Services in a Service will have dependencies between them. Dependencies can be:

· Serial. One Sub-Service must start only after the completion of another Sub-Service
· Alternative. One Sub-Service may be executed as an alternative to another

· Iterative Loop. A Sub-Service may be repeated a variable number of times

· Conditional. The execution of a Sub-Service is conditional on the state of another Service. This may be used in conjunction with Serial, Alternative and Iterative Loop dependencies.

· Parallel. A Sub-Service may execute in parallel with another Service
· Concurrent. A Sub-Service must execute at the same time as another Sub-Service.

An example of a simple Sub-Service Choreography is a Purchase Service that consists of three Sub-Services:

· an Offer Service that conveys an Offer for sale of goods. This Sub-Service has no dependencies and therefore starts first

· a Payment Service that carries out the Payment which has a Serial dependency on the Offer Service

· a Delivery Service that delivers the Digital Goods, that has a Serial Dependency on the Payment Service

5.2.5 Application

An Application is software that may implement a Service by processing one or more of the Messages in the Document Exchanges associated with the Service.
5.2.6 Transaction

A Transaction is an instance of the execution of a Service
.

Examples of a Transaction include:

· a Purchase Transaction that buys a Company Report for $20. It consists of three Sub-Service instances:

· an Offer Service instance to buy the Company Report for $20

· a Payment Service instance that accepts a Payment for $20 using a credit card, and finally

· a Delivery Service instance that delivers the Company Report as an HTML web page.

· a Buying Service that consists of the following Sub-Services:

· three Price Negotiation Service instances that negotiate the price of a Photocopier

· a Purchase Order Service instance that places the order for the Photocopier.

6 Security Considerations

<EdNote>Cover any security issues surrounding the Headers. We probably need to talk about how and when to use signatures <EdNote>

7 Schemas, DTD Definitions and Examples

<EdNote>Note we will only define this section once the structure of the header parts are finalized (or nearly finalized) <EdNote>
7.1 XML Header DTD

<EdNote> Will contain an XML DTD version of the Header Parts whos structure is defined in this document</EdNote>

7.2 XML Header Schema Definition

<EdNote> Will contain an XSDL Schema version of the Header Parts whos structure is defined in this document</EdNote>

8 References

<EdNote>Needs to be completed</EdNote>

[1]
ebXML Transport, Routing and Packaging: Overview and Requirements document version x.x. Published xx April 2000

[2]
ebXML Transport, Routing and Packaging: Message Wrapper Specification version x.x. Published dd mmmm 2000

9 Acknowledgements

Contains a list of the individuals that have contributed to the spec <EdNote>Please volunteed names !!</EdNote>

10 Authors' Address

<EdNote> Will contain names, addresses, telephones & emails of authors </EdNote>

� A consortium companies developing business process models to support the computer manufacturing and electronic components industries.

� 	A digital signature represents a string of binary digits of arbitrary length created by using a cryptographic key known only to the party sending a message. The string is composed of an encrypted digest of some or all of the data in the message or in another location addressable by a URI. It is accompanied by some method (such as a digital certificate)of identifying to the party receiving the message, what key can be used to validate the digest against the original data.

� It is recommended that messages are saved in some type of persistent storage before they are acknowledged.

� 	There are several different meaning that have been associated with transactions:

"ACID" transactions (TBD) A transaction can be considered a collection of actions with the following properties:

Atomicity. A transaction's changes to the state are atomic: either all actions happen or none happen.

Consistency. A transaction is a correct transformation of the state. The actions taken as a whole do not violate any of the integrity constraints associated with the state. This requires that the transaction be a correct program.

Isolation. Even though transactions execute concurrently, it appears to each transaction T, that others executed either before or after T, but not both. In other words, each transaction is isolated from any others.

Durability Once a transaction completes successfully (commits), its changes to the state survive failures.

"EDI" transactions - "The information included in a transaction set is, for the most part, the same as the information in a conventionally printed document. A transaction set is the data that is exchanged in order to convey meaning between parties engaged in EDI"Conversational" transactions - A conversation is a sequence of Related Message SetRelated Message Sets between two parties separated in time. A complete "unit of business" for example, the negotiation of a purchase, placement, confirmation, payment and delivery of goods, may be represented as multiple transactions in a longer running conversation." From DISA publication titled "Introduction to EDI", (ASC X12S/94-190)

"Read-only" transactions - a transaction that consists of a document exchange where the information is obtained from a service wihtout changing the state of the service

ebXML Message Header Specification v0-3.doc (25-April-2000)
24

[image: image21.png][image: image22.png]\QXML

