
Registry Repository Classification /Interfacing version 0.21
 Page 1

 1

Registry/Repository 2

Program Interface Access Specification 3

Draft, Version 0.21, 18 September 2000 4

Working Document. 5

 6

Abstract 7

The need is to define both the classification system and the associated interface semantics 8
for Registry/Repository as program level interfacing via XML structures and methods to 9
the business semantic information definitions. 10

Status 11

This draft represents the blending of current practical work in a variety of areas with 12
XML, including the latest W3C Schema and Datatyping drafts, ISO11179, OASIS 13
Registry and IETF WebDav DASL work. 14

Contributors 15

Document Editor: TBD 16

Editor: 17

David RR Webber 18

Review Team: 19

Farrukh Najmi, Len Gallagher, Michael Kass, Scott Nieman, Bruce Peat. 20

21

DO NOT DISTRIBUTE

Registry Repository Classification /Interfacing version 0.21
 Page 2

1. Table of Contents 21

 22

 23
Registry/Repository 24
Program Interface Access Specification 25

Draft, Version 0.21, 18 September 2000 26
Abstract 27
Status 28
Contributors 29
1. Table of Contents 30
2. Introduction 31

2.1 Business Use Models and Requirements 32
2.2 Design Goals 33
2.3 Terminology and Concepts 34

2.3.1 Classification 35
3.3.1 Coded Classification Scheme 36
4.3.1 Package 37
5.3.1 Query 38
6.3.1 Change Request 39

2.4 Relationship of Information Model 40
2.5 Attribute Types 41
2.6 Enumeration Entities 42

3.6.1 DefinitionSource 43
4.6.1 PrimaryClassification 44
5.6.1 SecondaryClassification 45
6.6.1 AssociationType 46
7.6.1 ContactAvailability 47

2.7 Default Classification Structures 48
3. Registry Interfacing Models 49

3.1 Relation to IETF WebDav DASL work 50
3.2 Interfacing Models 51

3.2.1 The TRP Interface Model 52
4.2.1 The TPA Interface Model 53
5.2.1 The BP/CC (ebXML GUIDE) Interface Model 54
6.2.1 Alignment with TRP Interface and Security Model 55
7.2.1 The Linkage Model between Classification, Interface and Query/Response mechanisms. 56

3.3 Examples of Registry Interfacing 57
3.4 The ebXML RegRep linking 58
3.5 Type systems 59
3.6 Relationship of and use of Bizcodes 60

4. Tutorial and Use Case 61
5. Addendum 62

 63

64

Registry Repository Classification /Interfacing version 0.21
 Page 3

2. Introduction 64

The objective of this document is to provide the necessary details for an understanding 65
and specification details of the classification and interfacing to business process semantic 66
information stored in an ebXML compliant Registry/Repository. 67

The top level is the classifications. This mechanism allows you to group together industry 68
vertical sets of transactions so you can quickly and easily find the particular business 69
functional components that you require based on business use and context. Classification 70
structures then allow access to the specific low-level semantics of the business definitions 71
and rules. 72

The interface specifications then show how those low-level semantics are stored, 73
accessed and retrieved for use. 74

75

Registry Repository Classification /Interfacing version 0.21
 Page 4

2.1 Business Use Models and Requirements 75

The following diagrams show how the various business use models and requirements are 76
met with the appropriate implementation architecture. These also show the interaction 77
models and exchanges of information that are required. 78

The first diagram shows a generalized application information access model and 79
associated requirements. This document is not intended to specify the requirements and 80
interchanges that this illustrates. It is provided here as a means of distinguishing the 81
scope of this document from the overall scope determined for all Registry/Repository 82
implementations. This first figure therefore shows a datawarehouse style information 83
deployment where the Registry/Repository is essentially acting as the data dictionary and 84
table directory that exists today in a RDBMS or OODBMS deployment. This 85
information store is then accessed via a TRP transport compliant delivery mechanism. 86

Figure 1. Application information (datawarehouse) interaction model 87

CC Analyzer

Repository

Registry

Oracle
Database

Business
Information

Analysis

Business
Query

Context Resolver

BP Analyzer

Primitive
Query
Access

Show partners
who sell

automobile glass

TRP Delivery

Callable Binding

TRP Handler

 88

The figure also shows how the high level business application query “show partners who 89
sell automobile glass”, must cascade through a series of low-level direct primitive queries 90
to resolve the context and business semantics of the actual database in order to issue the 91

Registry Repository Classification /Interfacing version 0.21
 Page 5

appropriate query. The information from this query then flows from the Oracle database 92
to the end-user application via TRP compliant delivery layer (callable bindings can hide 93
the physical implementation layer). From the transactional stance this whole interaction 94
uses TRP as a means to deliver a transaction payload (in this case the query) and then 95
receive a TRP response some time later, with the application results as a response 96
payload. To all intents and purposes this functionality mirrors that familiarly found in a 97
database transactional monitor system such as BEA Tuxedo™, coupled with the ability to 98
define an object hierarchical model of the information store structures across potentially 99
multiple such information stores. 100

The next figure shows the opposite. Instead of a user directed query, the system is 101
handling a set of discrete requests for low-level semantic information to resolve a 102
transformation of business semantic content from one structural format to another (in this 103
case, convert XML to and EDI format). The transformation is dependent on the specific 104
trading partner and business process, and so the machine interface must retrieve this 105
reference semantics as XML structures. Such structures must have an amount of 106
predictable structure to them to allow a deterministic programmatic access to the rules 107
and definitions. Part of the role of ebXML is to define those base primitive structures 108
that essentially bootstrap any one particularly industry vertical being able to consistently 109
store their own definitions and usage. 110

Figure 2. Machine directed semantic and primitive content retrieval 111

Repository

Registry

Primitive
Query
Access

Find the EDI format
for this transaction

and convert this
XML to that EDI

Query TPA

Query BP

Query
Structures

Query EDI
format rules

Query Bizcode
Definitions

 112

Registry Repository Classification /Interfacing version 0.21
 Page 6

The requirements for this level of interaction are quite different from the application level 113
in Figure 1. A set of discrete interfaces to each layer of the ebXML information matrix, 114
namely TPA, BP/CC and legacy EDI context (such as are defined at www.igML.org) are 115
required. 116

In this context interactions maybe needed between registries in a networked environment. 117
For instance, a registry may resolve a query for EDI igML definitions by remotely 118
querying those from a Registry that specializes in only that information. The next figure 119
shows the major interaction component requirements for that interaction model. 120

Figure 3. Registry-to-Registry query interfacing. 121

Business
Definitions
Repository

Business
Definitions
Repository

Registry

Application
Database
(Oracle)

Registry

Intra-Registry
Interactions

Primitive Access
Query Processor

Primitive Access
Query Processor

 122

This figure shows an optional application database also; to illustrate that application 123
information may also be resolved this way also. The next figure then combines all the 124
interaction models to show how both TRP and Registry primitive access are combined 125
together in order to fully meet all the requirements. 126

Registry Repository Classification /Interfacing version 0.21
 Page 7

Figure 4. Registry interaction mechanisms and architecture model. 127

TPA Profile
Validation

TPA Profile
Validation

Repository
(business semantic

definitions)

TRP Delivery Services

Registry
 (semantics,

classification, linkage)

Query Request

Primitive Registry
Access Services

Query Request

Query
Resolver

TRP Delivery Services

Callable Binding Layer

http Delivery Services

Primitive Query
Request

Query
Resolver

Low-level Semantic
Manipulation

Direct Access Delivery

Network Delivery

Network Delivery

Application
Database
(Oracle)

 128

This figure shows how all interaction models relate. However the focus of this 129
specification document is on only the Registry Primitive Access Services. This focus is 130
dictated both by the requirements identified for the Tokyo PoC applications, and also as 131
an assessment of the broader use need. Clearly the higher-level application information 132
usage requirements and model cannot be implemented until the base level primitive 133
mechanisms can store and retrieve business process, core component and reference table 134
information. 135

 136

137

Registry Repository Classification /Interfacing version 0.21
 Page 8

2.2 Design Goals 137

The ebXML principles require that the Registry primitive access services XML syntax 138
used must be: 139

1) Simple to understand, to learn, read and use. 140

2) Provide a concise feature function set thereby ensuring consistent implementations, 141
interoperability, and low cost of adoption. Each feature must earn its place based on 142
widespread business need and applicability. 143

3) Separate the query, change and representation syntax, and use existing work such as 144
IETF WebDav DASL wherever possible. 145

4) Support the storage and retrieval of ebXML Business Process and Core Component 146
definition methods. 147

5) Provide a human interface for information discovery via a direct browser form based 148
interactions and allowing rendering with multilingual support. 149

7) Provide a simple metaphor to migrate and express existing data dictionaries and 150
related content such as COBOL copybooks, SQL table definitions, CICS structures, 151
program data structures, business data dictionaries and similar information content 152
quickly and easily into. 153

8) Be based on the W3C XML markup syntax, with minimal use of extended features, 154
and be consistent with and interoperable with the ebXML technical specifications. 155

9) Above all, provide both large industry partners and small businesses with mission 156
critical high volume, high performance, and open public standard based interchanges. 157
Coupled with the long term means to conduct and maintain cost effective electronic 158
information exchanges that can be simply deployed and exploited by as large a cross-159
section of the workforce as possible. 160

161

Registry Repository Classification /Interfacing version 0.21
 Page 9

2.3 Terminology and Concepts 161

The following extracts are provided to aid understanding of this document. 162

2.3.1 Classification 163

A classification is a partition of a given collection of items into mutually exclusive and 164
collectively exhaustive sub-collections. A classification depends upon a pre-existing 165
specification of a hierarchy of values, names, and codes called a classification scheme. 166
Registry items in a Registry may be classified by as many classification schemes as 167
deemed appropriate by the Submitting Organization. A classification scheme can have 168
an associated XML structure that defines the information within the classification. An 169
example would be currency table that has currency code, currency symbol, name, country 170
code, conversion rate and date associated with it. Classifications may be referential; so 171
one classification may depend on another classification. 172
 173
A distinction can therefore be made between classifications that describe physical 174
business content as above, and classifications that describe collections of like information 175
within the registry itself, such as XML structure layouts associated with business 176
processes. 177

3.3.1 Coded Classification Scheme 178

A coded classification scheme is a hierarchy of values that can be referenced by a 179
classification. A coded classification scheme can vary from a simple set of values to a 180
complex multi-level hierarchy. An example of a simple single-level coded classification 181
is the set {Freshman, Sophomore, Junior, Senior} used to partition a collection of 182
students. An example of a more complicated classification scheme is one based on the 183
hierarchy of all living things with named levels for Kingdom, Phylum, Class, Order, 184
Family, Genus and Species. 185

4.3.1 Package 186

A Package is a conceptual notion used to identify a set of registered objects. It is defined 187
to be a registered object that is a set of pointers to other registered objects. Using this 188
definition, a package can represent a hierarchy of registered objects, where non-terminal 189
nodes of the hierarchy are other packages and terminal nodes are package or non-package 190
objects. A package is a terminal node in a package hierarchy if and only if the package is 191
empty. A registered object may be pointed to by several different packages. A package 192
relationship between a registered package and some other registered object pointed to by 193
a package element is represented by the contains role in an association instance. 194
 195
Since the representation of a registered object is defined to be a file, the file representing 196
a package object is an XML document. 197

Registry Repository Classification /Interfacing version 0.21
 Page 10

5.3.1 Query 198

A query is a message from a public user of a registry database to a registry, asking that 199
certain information be returned. A request is sent in the form of an XML document that 200
validates to one of the XML query DTD's defined elsewhere in this specification. The 201
response to a query will validate to the associated XML response wrapper DTD. 202

6.3.1 Change Request 203

A request is a message sent from a Submitting Organization to a Registration Authority 204
asking that certain additions or modifications be made to the Registry. A request is 205
generally sent in the form of an XML document that validates to one of the request 206
DTD's defined elsewhere in this specification. A request instance will consist of a request 207
code to identify the type of request as well as the XML content of a specific request. 208
 209

Further details on the terminology definitions can be found from the OASIS Information 210
Model document, and the ebXML Part 1 Repository specifications document. 211

 212

2.4 Relationship of Information Model 213

The objective is to provide layers of XML classification syntax for the ebXML 214
functionality of TPA, BP and CC, a legacy EDI data dictionary, TRP and any directly 215
associated content such as UDDI that naturally overlay onto the classification system 216
required by an ebXML compatible Registry system. Once such approach here is the 217
ebXML GUIDE classification system (http://www.xmlguide.org). 218

Similarly an ebXML compatible registry change or query request can then be mapped 219
into an existing classification XML structure. Such change or query requests can then be 220
easily structured relative to the XML structure using WebDav style DASL querying 221
mechanisms. 222

Further work is underway to similarly provide a bridge to an ISO11179 compatible 223
repository at the level of the element definition layer. 224

The following figure illustrates the Registry classification model expressed as an OASIS 225
information model. For ebXML the classification syntax noted above: TPA, TRP, 226
BP/CC/EDI (GUIDE), and UDDI each constrain the content information model to 227
discrete sets. 228

The difference is therefore that the OASIS design is a generalized information model, 229
while the ebXML is designed for business transactional information use and is therefore 230
optimized to provide those interactions. 231

Registry Repository Classification /Interfacing version 0.21
 Page 11

Also ebXML Registry/Repository has extensions and transformation support that OASIS 232
registry does not provide. 233

Figure 5. OASIS Registry Information Model 234

Registry Item

Association

Classification
- Name
- Level
- Value

Alternate Name (s)
- Role
- Name

Oasis Specialization
(4 models)

Oasis Action
- Uses
- Supercedes
- Replaces
- Contains
- Rollup

Related Data
- Name
- URL
- Role

Alternate Description

Contributor

 235

For more extended information on the OASIS registry specifications please see 236
http://www.xml.org and associated content. Also see Registry/Repository Classification 237
Specifications document. 238

 239

2.5 Attribute Types 240

Attribute values in the information model will be one of the following types: 241
 242
• Entity References 243
• Base Types 244
 245
Some attribute values will be references to entity instances and some will be primitive 246
types that can be represented as character strings, numbers, dates, or dates and times. 247
Identified entity references include one of the following types: 248
 249
 REGISTRY_ITEM 250
 ORGANIZATION 251
 CONTACT 252
 SUBMISSION 253
 254

Registry Repository Classification /Interfacing version 0.21
 Page 12

To this list we add the Enumeration Entities defined below. 255
 256
The following definitions identify the base types that will be used in this specification. 257
 258
CodeText (valid XML tag name or reference URI) -- a character string consisting entirely 259
of visible characters from an implied character set. The presence of non-visible 260
characters, even blank spaces, is an error. In XML environments, CodeText may not 261
contain XML characters with special meaning. These include the ampersand (&), etc. 262
 263
ShortDescription -- a character string consisting of visible characters from an implied 264
character set, together with optional use of blank spaces. Any other non-visible characters 265
are ignored during processing, and other non-visible characters are stripped out before 266
acceptance as a value of an attribute having this datatype. 267
 268
Date -- a value that represents a calendar date, constrained by the natural rules for dates 269
using the Gregorian calendar. A Registry will be able to respond to queries involving 270
minimal date arithmetic, e.g. finding all instances of an entity having dates for a given 271
attribute that fall within a given range, or finding all instances having dates in the past 30 272
days, or finding all registry items whose registration is scheduled to expire in the next 3 273
months, etc. More advanced date arithmetic or date manipulation is at the discretion of 274
the Registry. 275
 276
Date Literal -- a character string value that identifies a specific date. A date literal string 277
is of the form YYYY-MM-DD where YYYY is an integer literal for the year, MM is an 278
integer literal for the month of the year, and DD is an integer literal for the day of the 279
month. Whenever a date value is presented to a user, or requested from a user, the date 280
value is presented or transmitted as the equivalent date literal. 281
 282
Datetime -- a value that represents a calendar date and a time within that date, with time 283
precision to the minute, or finer. Unless otherwise indicated time is Universal 284
Coordinated Time based on a 24-hour clock. A Registry has the capability to convert a 285
Datetime type to a Date type, with the expected loss of precision. Any other datetime 286
arithmetic or datetime manipulation is at the discretion of the Registry. 287
 288
Datetime Literal -- a character string value that identifies a specific datetime. A datetime 289
literal string is of the form YYYY-MM-DD HH:MM:SS where YYYY is an integer 290
literal for the year, MM is an integer literal for the month of the year, DD is an integer 291
literal for the day of the month, HH is an integer literal for the hour (assuming 24-hour 292
clock), MM is an integer literal for the minute within the hour, and SS is an integer literal 293
for the second within the minute. Whenever a datetime value is presented to a user, or 294
requested from a user, the datetime value is presented or transmitted as the equivalent 295
datetime literal. 296
 297
SmallInt -- A non-negative integer with value less than 2**16. 298
 299

Registry Repository Classification /Interfacing version 0.21
 Page 13

URNref -- a character string that conforms to the format of a Uniform Resource Name 300
(URN) as specified by IETF RFC 1241. The length of a URNref string is less than or 301
equal to 150 characters. 302
(See http://www.ietf.cnri.reston.va.us/rfc/rfc2141.txt?number=2141) 303
 304
URLref -- a character string that conforms to the format of a Uniform Resource Locator 305
(URL) as specified by W3C. The length of a URLref string is less than or equal to 150 306
characters. 307
(See http://www.w3.org/Addressing/URL/5_BNF.html) 308
 309
FTPref -- a character string that conforms to the format of a File Transfer Protocol (FTP) 310
Uniform Resource Locator (URL) as specified by W3C. The default user name is 311
"anonymous". The length of an FTPref string is less than or equal to 150 characters. 312
(See http://www.w3.org/Addressing/URL/5_BNF.html) 313
 314
FILEref -- a character string that is a URLref or an FTPref. 315
 316
MIMEtype – a character string that identifies a MIME type, as listed in the official list of 317
all MIME media-types assigned by the IANA (Internet Assigned Number Authority). The 318
length of a MIMEtype string is less than or equal to 150 characters. 319
(See ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types) 320
 321
LanguageId -- a character string that identifies a human language and a country where 322
that language has evolved. In general, it is of the form "xx-CC", where xx is a two 323
character code (lowercase) for a human language and CC is a two character country code. 324
Legal strings are specified by Language Identifier, definitions [33] through [38] in W3C 325
XML 1.0. (http://www.w3.org/TR/REC-xml#sec-lang-tag). 326
 327
CharEncoding -- a character string that identifies the encoding of a character set. It is 328
specified by the encoding name (EncName) of an Encoding Declaration, definition [81] 329
in W3C XML 1.0. 330
(http://www.w3.org/TR/REC-xml#charencoding). 331

332

Registry Repository Classification /Interfacing version 0.21
 Page 14

2.6 Enumeration Entities 332

Many of the attributes declared to be of type CodeText will have an additional constraint 333
that the CodeText value match a specific value from a pre-defined list of values. The 334
Registry information model represents such lists as entities with a fixed number of entity 335
instances. We define such entities to be enumeration entities. 336

3.6.1 DefinitionSource 337

SourceCode SourceName Description
EbXML Author of the ebXML

Registry/Repository specification.
IEEE_LOM IEEE Learning Technology -

Learning Object Model
Author of the IEEE LOM Registry
specification.

IMS Author of the IMS Registry specification.

OASIS Organization for the Advancement
of Structured Information
Standards

Author of the OASIS Registry/Repository
specification.

 338

4.6.1 PrimaryClassification 339

Source Code Name Description
ebXML defn Definition An XML definition document.

ebXML inst Instance An XML instance document.
ebXML pkg Package A package of registered items.

ebXML other Other (mimetype) Binary content, must be related to a
registered item.

 340

5.6.1 SecondaryClassification 341

Items within definition and instance may be of related XML types such as XSL, xhtml 342
and so forth. The default is XML, but MIMETYPE as an attribute may be used to qualify 343
the exact content. Only content labelled by an applicable MIMETYPE will be accepted. 344
An ebXML registry may choose to limit or validate MIMETYPE content, as it requires. 345

2.5.1 Submission Semantic Rules 346

1. The RegistryItem entity represents the set of all registered objects in the Registry. 347
Each instance identifies a single registered object. A registry item instance holds only 348

Registry Repository Classification /Interfacing version 0.21
 Page 15

some of the metadata for a registered object; other metadata is held by other entities 349
in the Registry. 350

 351
2. Each registry item instance is assigned a unique identifier by the Registration 352

Authority (RA). This implicit value is said to be of type REGISTRY_ITEM. It is used 353
to represent relationships of this instance with other information in the Registry. 354

 355
3. The AssignedURN name is created and assigned by the RA. It is created to be unique 356

within a conforming Registry/Repository implementation. When a Submitting 357
Organization (SO) makes a submission to the Registry, it provides a local reference 358
name of type CodeText. If possible, the RA uses that name to construct the 359
AssignedURN. 360

 361
4. The CommonName is provided by the SO. 362
 363
5. The Version is provided by the SO. It can have an arbitrary format and is used only to 364

help distinguish one registry item from another having the same common name. The 365
AssignedURN will be different for different versions. 366

 367
6. The ObjectLocation is a URL that identifies the location of the registered object. If 368

the RA is also a repository for the item, then the RA will download the item, store it 369
in the Repository, and create an http-based locator as a value for ObjectLocation. If 370
the Registry is not also a Repository, then the ObjectLocation is provided by the SO 371
and the RA has no further responsibility. The SO may also qualify the content with an 372
AccessChannel. The ObjectLocation URL may need to be supplemented with 373
channel and password information before the file containing the object can be 374
retrieved. An ebXML Registry may then distinguish access to information within 375
itself by utilizing AccessChannel rights, and assigning users to particular access 376
channels. 377

 378
7. The DefnSource takes its value from the DefinitionSource enumeration entity that 379

identifies a collection of accredited Registry/Repository development organizations. 380
If the Registry claims conformance to the ebXML Registry/Repository, then the 381
DefnSource is ebXML. 382

 383
8. The PrimaryClass is provided by the SO and takes its value from the 384

PrimaryClassification enumeration entity. If the DefnSource is ebXML, then 385
PrimaryClass identifies an element of the set {Definition, Instance, Package, Other}. 386
 387

 388
a) The SecondaryClassification is provided by the SO and takes its value from the 389

enumeration entity and must be a valid MIMETYPE. 390
 391

The RelatedType is provided by the SO and takes its value from the RelatedDataType 392
enumeration entity. 393

 394

Registry Repository Classification /Interfacing version 0.21
 Page 16

9. The RegStatus is provided by the RA with its value taken from the RegistrationStatus 395
enumeration entity. For ebXML registrations, that entity includes the values 396
{Baseline, Submitted, Registered, Superseded, Replaced, Withdrawn, Expired}. The 397
StatusChg attribute is the datetime that the RA last approved a change for RegStatus. 398

 399
10. The Stability attribute is provided by the SO with its value taken from the Stability 400

enumeration entity. For ebXML registrations, that entity includes the values {Static, 401
Dynamic, Compatible}. 402

 403
11. The ExpiryDate is assigned by the RA upon suggestion from the SO. Some RA's may 404

follow very definite procedures for the length of time an object can remain registered 405
before an affirmation or withdrawal action is required. If the Expiration date passes 406
without an SO action, then the RA initiates an expiration action. 407

 408
12. The Description is provided by the SO. 409
 410
13. The SubmittingOrg identifies the organization submitting the registered object. It 411

points to a unique instance of the ORGANIZATION entity. On presentation of this 412
information, the RA substitutes the CommonName of the organization. The SO must 413
be known to the RA before it can make submissions to the Registry/Repository, and 414
they each know of a unique URN for the other. The process for becoming known is 415
not part of this specification. 416

 417
14. The ResponsibleOrg identifies the organization responsible for the formal 418

specification of the registered object. It points to a unique instance of the 419
ORGANIZATION entity. The RO may be a formal accredited standards development 420
organization or it may be the SO. On presentation of this information, the RA 421
substitutes the CommonName of the organization. 422

 423
15. The PublicComment may be suggested by the SO, but it is supplied by the RA. In 424

most cases the comment will explain some administrative process that cannot be 425
clearly determined from the standardized information. For example, this comment 426
may explain how long the metadata for a replaced or withdrawn object remains 427
available, or how long an expired object remains available before it is deleted. 428

429

Registry Repository Classification /Interfacing version 0.21
 Page 17

 429

6.6.1 AssociationType 430

Source Code Name Description
ebXML contains Contains Given item is a package that contains the

associated item.
ebXML related Related Given item is related to associated item

and provides supplemental information for
the associated item.

ebXML supersedes Supersedes Given item supersedes associated item.
ebXML uses Uses Given item uses associated item.
 431

7.6.1 ContactAvailability 432

Source Code Name Description
ebXML Priv Private Contact available only to SO and RA.
ebXML Prot Protected Contact available only to RA's.
ebXML Pub Public Contact available to all users of registry.

433

Registry Repository Classification /Interfacing version 0.21
 Page 18

2.7.1 Structure 433

Attribute Name Attribute Type Presence
AssignedURN URNref Mandatory
CommonName ShortName Mandatory
Version CodeText
ObjectLocation FILEref
DefnSource CodeText Mandatory
PrimaryClass CodeText Mandatory
SubClass CodeText
RelatedType CodeText
MimeType MIMEtype Mandatory
RegStatus CodeText Mandatory
StatusChg Datetime Mandatory
Stability CodeText Mandatory
PayStatus CodeText Mandatory
ExpiryDate Date Mandatory
Description DescriptionText Mandatory
SubmittingOrg ORGANIZATION Mandatory
ResponsibleOrg ORGANIZATION Mandatory
PublicComments CommentText

2.7.2 Semantic Rules 434

1. The RelatedData entity represents the set of non-registered objects that are related to 435
registered objects. Each instance is a pairwise relationship between a single registered 436
item and a single related data item. A registered item may map to many related data 437
items. 438

 439
2. Each instance of RelatedData depends upon a RegistryItem instance. This 440

dependency is represented by an implicit value, RAitemId, of type 441
REGISTRY_ITEM. 442

 443
3. The DataName attribute is provided by the SO. It is intended that this be the link 444

name for the DataLocation if related data items are presented visually to a user. 445
 446
4. The DataLocation is provided by the SO. This link is not under the control of the RA 447

and it may point anywhere. The RA is under no obligation to ensure that the link is a 448
valid one. 449

 450
5. The RelatedType is provided by the SO and takes its value from the RelatedDataType 451

enumeration entity. It may include values not defined by OASIS. 452

Registry Repository Classification /Interfacing version 0.21
 Page 19

 453
6. The MimeType is provided by the SO. It identifies the MIME type of the related data 454

item. The RA is under no obligation to ensure that the declared MimeType type is 455
consistent with the actual file type of the file referenced by DataLocation. 456

 457
7. The Comment is provided by the SO. It may further explain the relationship between 458

the related data instance and the registry item it is linked to. 459

2.7 Default Classification Structures 460

The ebXML Registry is pre-loaded with a set of default classification structures. These 461
fall under two categories. The first category covers the ebXML components such as 462
ebXML TRP, TPA, BP/CC and the Query/Response DASL mechanisms themselves. 463
The second category covers supporting and reference domains as elements that are basic 464
primitives that underpin the TRP, TPA and BP/CC definitions themselves. From these 465
basic building blocks the ebXML Registry can then accept further business domain 466
definitions and content.467

Registry Repository Classification /Interfacing version 0.21
 Page 20

 468

3. Registry Interfacing Models 469

 470

3.1 Relation to IETF WebDav DASL work 471

Generally speaking the ebXML approach is to follow the DASL approach and provide a 472
focused subset of a business functional feature set based on those technology neutral 473
technical specifications (see http://www.webdav.org for more details). The WebDav 474
DASL approach provides an ideal widely supported lightweight XML based interaction 475
model. While the use of DASL is not mandated, the use of DASL as a reference 476
implementation provides ebXML with the means to rapidly define a viable specification. 477

The following matrix attempts to provide a set of ebXML-centric criteria that provide a 478
useful understanding for prioritizing use of middleware solutions. 479

Factor WebDav DASL CORBA SOAP

Secure interchanges SSL based Yes Yes
http support Yes Yes Yes
Public open standard Yes Vendors Vendors
Database transactional model Yes No No
Query language support Yes Extensions No
Error response model Yes Yes Yes
Access profile support Yes Extensions Yes
Loosely coupled interchange model Yes Tight coupled Semi
Cross-platform support Yes Installable Installable
Apache Web Server extensions Yes No No
XML based syntax Yes Support for Yes
Extensible query/response structures Yes Semi Semi

 480

481

Registry Repository Classification /Interfacing version 0.21
 Page 21

3.2 Interfacing Models 481

The ebXML Technical Architecture specifications detail the actual registry/repository 482
interfacing required for each of the components of ebXML. The figure shown here 483
illustrates these as a set of interface services to be provided. This approach allows us to 484
define discrete interface XML structures to implement these with. 485

Figure 6. The ebXML Registry Interfaces 486

access

action

access

action
access

action

values

Library Management
System Functionality

T
R

P

BP/CC

T
P

A

API

structure

values

API

structure

Admin'

Human

values

API

structure

Traverse

Human

Interface Interface

Interface

 487

Shown are three interface components to the major ebXML modules of TRP, TPA and 488
BP/CC. The role and actors (see ebXML Registry/Repository Specifications Part 1) 489
determine the types of interactions supported by these interfaces. Therefore TRP does 490
not warrant a human interface capability since only machine-to-machine interactions are 491
required with the Registry. 492

The library management system functionality essentially treats the internal mechanisms 493
within the ebXML Registry implementation as a ‘blackbox’ that supports the 494
requirements as laid out in both the overall ebXML Requirements document, the 495
Registry/Repository Part 1 and the Registrar, DocumentManager and TPAManager noted 496
elsewhere in this document. This approach allows any such capable existing document 497
management or library system to be exposed as an ebXML Registry using the appropriate 498
WebDav DASL interfacing bindings. 499

Each of the interfaces is now described functionally and then in the following section 500
actually interchange XML structure specifications are shown. The common theme is that 501
any registry interface will consist of the components, Access, Action, Structure and 502
Values. These correspond to the similar DASL approach of technology neutral bindings. 503

Registry Repository Classification /Interfacing version 0.21
 Page 22

The definition of each of these is: 504

1. Access - The profile that describes the access allowed, includes an optional channel 505
through which information is accessed, and an associated user account and optional 506
password. The user account will have an associated ebXML TPA profile. 507

2. Action – The particular action to be performed, either a Query, or a Change Request 508
and then an optional post-processing action and optional error action. 509

3. Structure – the associated XML structure of both the request format and also the 510
response format. These will be associated using either a URL or a namespace. 511

4. Values – the actual content values in either the request, or the response XML payload 512
details. 513

3.2.1 The TRP Interface Model 514

The TRP interface provides a machine level Application Programming Interface (API) 515
using WebDav DASL based interactions. The TRP interface is primarily concerned with 516
verifying transport related content in the ebXML-messaging envelope. For this it 517
requires to access classification structure information, semantic business information and 518
actual content values to ensure compliance. Therefore request/response mechanisms are 519
required for these interactions. The interaction content and functionality themselves are 520
more fully described in the ebXML TRP Specifications. 521

 522

4.2.1 The TPA Interface Model 523

The TPA interface provides both a machine level API and a human level interface. The 524
human level interface is required to support TPA management and administration. While 525
API calls will underpin the actual human interface, and the actual mechanics and look 526
and feel of the human interface are not prescribed, it is important to state in the 527
specifications that a human interface is provided. This is to ensure that authentication 528
and verification of critical trading partner information is possible locally for the registry 529
administrator, and other than through a remote API interface. The specific human 530
interface functionality that is required is: 531

1. The ability to query on and review an individual TPA entry details. 532
2. The ability to update and change an individual TPA entry details. 533
3. The ability to setup access profiles and then to assign these to TPA entries. 534

Meanwhile the API machine-to-machine interfacing provides trading partner information 535
to compliment the TRP API by providing specific verification information and also to 536
provide search capabilities for Business Process related querying. Therefore the TPA 537
API interface may be used to discover capable trading partners within an industry or 538
business process domain. Again, the TRP messaging specifications are sufficiently clear 539
on the requirements to access TPA content and at that level of access require strictly 540
query/response interchanges with optional access logging to implement. 541

Registry Repository Classification /Interfacing version 0.21
 Page 23

5.2.1 The BP/CC (ebXML GUIDE) Interface Model 542

The BP/CC interface provides both a machine level API and a human traversal discovery 543
interface. This human interface is intended primarily to be used by business analyst staff 544
researching content and business processes within the registry. Such human interface 545
interactions are intended to use a topic map style presentation of the related information 546
within the Registry organized according to the business process classification system 547
inherent in the Registry. The ebXML GUIDE specifications provide the classification 548
layer content to drive this functionality and the ebXML BP and CC specifications provide 549
the specialized content structures within the classification layer. This functionality is also 550
a discrete focused business tool that allows industry domains to publish their business 551
processes either generically, or particular to either groups of trading partners or 552
individual businesses within the industry. While API calls will underpin the actual 553
human interface, and the actual mechanics and look and feel of the human interface are 554
not prescribed, it is important to state in the specifications that a human interface is 555
provided. Each industry implementation may differ in the style of information 556
presentation and scope made available and this specification is not attempting to dictate 557
those aspects. Instead a list is presented here of human functionality that can be enabled. 558

1. Tree based topic map traversable structure that provides a review of business domain, 559
and the industry partners and the business processes supported by the registry. 560

2. Ability to query on a specific classification details within an industry and return a list 561
of applicable element definitions for review. 562

3. Ability to query on an item by unique reference identifier and return that content item 563
for display and review. 564

4. The ability to submit changes to the content details within the registry. 565

 566

The machine API calls that underpin the human interface then provide the same 567
functionality in machine-to-machine interfacing with the BP/CC content within the 568
Registry. By specifying a discrete set of ebXML GUIDE classification structures this 569
reduces the need for ebXML based business applications to perform complex discovery 570
interactions with an ebXML Registry to determine the actual semantics of information 571
content. This both speeds access and makes for more consistently interoperable 572
interchanges. 573

6.2.1 Alignment with TRP Interface and Security Model 574

Reviewing the DASL approach and the MIME based approach TRP approach there are 575
significant similarities in the formatting and structure of the interchanges. We do not 576
anticipate that the differences where they exist between the two systems will present 577
particular implementation challenges, particularly as WebDav is now a widely supported 578
open cross-platform specification. 579

Registry Repository Classification /Interfacing version 0.21
 Page 24

The TRP messaging model already has an envelope structure that contains specific 580
information regarding the trading partner and authentication and verification information. 581
However, these same mechanisms are not always applicable to adopting wholesale for 582
the Registry access, as the business functional needs are different. We also face a very 583
real ‘Catch22’ situation where the information in the TRP header requires access to the 584
Registry to access the TPA within the Registry. The solution is to link the Registry 585
WebDav DASL accessing to the same content as the TRP exchange uses for TPA 586
verification within the Registry through a lightweight DASL query mechanism that still 587
provides sufficient security and authentication measures. Such information inside the 588
TRP envelope can then be optional encrypted using the recipient’s public encryption key. 589
The TRP services can then issue DASL requests based off the information in the TRP 590
envelope header alone and this then ensures consistency. 591

The WebDav DASL system also has its own error response handling system, so this 592
removes the need for ebXML Registry/Repository interfaces to define these mechanisms 593
as they are provided in the interchange. 594

595

Registry Repository Classification /Interfacing version 0.21
 Page 25

7.2.1 The Linkage Model between Classification, Interface and 595
Query/Response mechanisms. 596

To help with the understanding of how the interface mechanisms actually get 597
implemented the following diagram shows how information within the query and 598
response is drawn from the various components of the Registry/Repository itself. 599

The need is to provide generalized querying mechanisms that are driven off the base 600
primitive structures that are used to define all ebXML BP models, ebXML CC models 601
and reference table implementations. An example of such generic structural based 602
markup is the <definitions> section in the GUIDE element definitions, and the retrieval 603
of EDI igML information using this ability to model any structured information content. 604
See examples 6 & 7 below for this use case. The first set of examples below show a 605
simpler use where the queries retrieve a structure definition based on the BP industry 606
domain (GCI) and the reference QIC code value associated with the structure item itself. 607

Figure 7. Query/Retrieve Semantic Retrieval Information Interactions. 608

BP Classification
Structure

Industry Domain

Trading Partner Identifier

TPA profile

Business Process

Query1

Retrieve

Query

Retrieve

2

3

4

Structure Reference

Physical XML
Transaction
Structures

Query

XML
Structure

Retrieve

5

 609

 610

The next section shows actual syntax examples for this interaction model. 611

612

Registry Repository Classification /Interfacing version 0.21
 Page 26

3.3 Examples of Registry Interfacing 612

The following extracts are provided to aid understanding of this document. 613

The WebDav DASL approach provides an ideal widely supported lightweight XML 614
based interaction model. 615

Further more the DASL system provides an extensible interface specification, so ebXML 616
compatible query and response structures can be registered and then utilized within a 617
DASL XML wrapper. For more information on DASL see http://www.webdav.org). 618

Example 1 ebXML Registry DASL query structure 619

This example illustrates a simple query to return a structure content item from the 620
registry. The request below is an implicit XML structure based system that is keyed off 621
the base ebXML classification structures within the ebXML Registry. Since an ebXML 622
Registry is not an arbitrary collection of unordered information, but instead is a focused 623
set of related content the request can utilize basic primitive aspects of the ebXML 624
Registry to enable the request interface system (Structure Reference as noted in figure 7 625
as above). 626

Therefore the query knows that it can reference the two tags <domain> and <qic> as 627
primitives within a classification structure. In this example it has already been 628
previously determined by examining the BP classification that the transaction required 629
has a QIC reference identifier of ‘GCI07090’ and is from the industry domain of ‘GCI’. 630

SEARCH / HTTP/1.1 631
Content-Type: text/xml 632
Connection: Close 633
Content-Length: 632 634
 635
<?xml version="1.0" ?> 636
 <!-- ebXML Registry Structure Request V0.1 --> 637
 <D:searchrequest xmlns:D="DAV:" xmlns:eb="ebXML:"> 638
 <eb:request> 639
 <eb:access> 640
 <eb:channel>anonymous</eb:channel> 641
 <eb:auth user="klaus" password="76778jjk" /> 642
 </eb:access> 643
 <eb:input> 644
 <eb:match> 645
 <eb:item name="domain" value="GCI"/> 646
 <eb:item name="qic" value="GCI07090"/> 647
 </eb:match> 648
 <eb:select> 649
 <eb:version>00</eb:version> 650
 <eb:content>structure</eb:content> 651
 <eb:parent>root</eb:parent> 652

Registry Repository Classification /Interfacing version 0.21
 Page 27

 </eb:select> 653
 <eb:operation> 654
 <eb:pageSize>10</eb:pageSize> 655
 <eb:hitCount>1</eb:hitCount> 656
 </eb:operation> 657
 </eb:input> 658
 <eb:output type="content" /> 659
 </eb:request> 660
</D:searchrequest> 661

Reviewing the request structure above the <eb:match> block contains references to 662
domain and qic items that are part of the ebXML GUIDE classification scheme so 663
therefore these are known structural elements that can be searched on. In fact any 664
element within the registry can be searched on in context using this technique. DASL 665
also provides the means to specify selection operatives such as <or> and <and> to adjust 666
the search behaviour. By default a <eb:match> block is an implicit logical and of all 667
items specified. This behaviour will accommodate most common requests to the 668
Registry. 669

In the <eb:select> block a request for version ‘00’ will return the latest version available, 670
and the content and parent elements indicate that we require the complete structure of the 671
matching XML content. The <eb:operation> block controls the behaviour of the search 672
process itself. Again DASL provides these mechanisms to control the operation of the 673
search system. 674

Then the <eb:output> block controls how the output is returned to the invoking system. 675
The “content” parameter causes the default behaviour of returning the physical content, 676
the other option is to return a URL pointer structure that can be used to reference the 677
physical content itself. 678

679

Registry Repository Classification /Interfacing version 0.21
 Page 28

Example 2 ebXML Registry DASL response structure 679

The corresponding response mechanism is now shown for the request query in Example 1 680
above. 681

HTTP/1.1 207 Multi-Status 682
Content-Type: text/xml 683
Content-Length: 2032 684
 685
<?xml version="1.0" ?> 686
 <D:multistatus xmlns:D="DAV:" xmlns:eb="ebXML" 687
xmlns:R="http://www.ebxml.org/dasl-resp-schema"> 688
<D:response> 689
<D:href /> 690
<D:propstat> 691
<D:prop> 692
 <R:author>Ravi Kraft</R:author> 693
 <R:title>Catalogue Manifest</R:title> 694
 <R:synopsis>Vendor Catalogue Inventory Details</R:synopsis> 695
 <R:last-modified>1999-12-25T112222PST</R:last-modified> 696
 <R:size unit="kilobytes">3</R:size> 697
 <R:extra-info /> 698
 <R:external-doc-id /> 699
 <R:doc-id>11227726625</R:doc-id> 700
 </D:prop> 701
 </D:propstat> 702
 <eb:structure> 703
<![CDATA[704
<!-- Main definition of CatXML content schema V 1.1 --> 705
<!ELEMENT Input (Schema , Content)> 706
<!ELEMENT Schema (#PCDATA)> 707
<!ELEMENT Content (Vendor? , Supplier? , StockInfo? , ShipInfo? , Item 708
)> 709
<!-- Establish link to qic reference location --> 710
<!ATTLIST Content 711
 qicref CDATA #FIXED "http://www.catxml.org/qic/datatypes.xml" > 712
 713
<!ELEMENT Vendor (CompanyID , Name? , Address? , Contact?)> 714
<!ATTLIST Vendor 715
 vendorID ID #IMPLIED 716
 qic 'GCI01502' #FIXED > 717
<!ELEMENT CompanyID (#PCDATA)> 718
<!ATTLIST CompanyID 719
 context (Vendor|Supplier|Manufacturer|Other) 'Vendor' 720
 idType (DUNS|Local|USDoD|EIN|TaxID|Other) 'DUNS' 721
 qic 'GCI01503' #FIXED > 722
<!ELEMENT Name (#PCDATA)> 723
<!ENTITY % addressInfo SYSTEM "CatXML-address-V1.dtd" > 724
<!ENTITY % contactInfo SYSTEM "CatXML-contact-V1.dtd" > 725
<!ENTITY % shippingInfo SYSTEM "CatXML-shipping-V1.dtd" > 726
<!ENTITY % usgovDoDInfo SYSTEM "CatXML-usgovDoD-V1.dtd" > 727
<!ENTITY % stockInfo SYSTEM "CatXML-warehouse-V1.dtd" > 728
 729

Registry Repository Classification /Interfacing version 0.21
 Page 29

 %addressInfo; 730
 %contactInfo; 731
 %shippingInfo; 732
 %usgovDoDInfo; 733
 %stockInfo; 734
]]> 735
 </eb:structure> 736
 </D:response> 737
</D:multistatus> 738

The next example shows a return of a link reference to repository content rather than the 739
physical content itself. 740

 741

Example 3 ebXML Registry DASL response structure 742

The corresponding response mechanism is now shown for the request query in Example 1 743
above where the <eb:output> block request is changed to specify a URL instead of the 744
content itself. 745

HTTP/1.1 207 Multi-Status 746
Content-Type: text/xml 747
Content-Length: 763 748
 749
<?xml version="1.0" ?> 750
<D:multistatus xmlns:D="DAV:" xmlns:eb="ebXML" 751
xmlns:R="http://www.ebxml.org/dasl-resp-schema"> 752
 <D:response> 753
 <D:href>http://www.GCI.org/ebXML/catalogue.xml</D:href> 754
 <D:propstat> 755
 <D:prop> 756
 <R:author>Duane Nickull</R:author> 757
 <R:title>Catalogue Manifest</R:title> 758
 <R:synopsis>Vendor Catalogue Inventory Details</R:synopsis> 759
 <R:last-modified>1999-12-25T112222PST</R:last-modified> 760
 <R:size unit="kilobytes">12</R:size> 761
 <R:extra-info /> 762
 <R:external-doc-id /> 763
 <R:doc-id>11227726625</R:doc-id> 764
 </D:prop> 765
 </D:propstat> 766
 </D:response> 767
 </D:multistatus> 768

The next example illustrates a request for a fragment of content interchange. 769

770

Registry Repository Classification /Interfacing version 0.21
 Page 30

Example 4 ebXML Registry DASL fragment query mode 770

Taking the previous example, the catalogue structure contains references to element 771
items. The definitions of these element items are stored within the registry/repository. 772
The structure itself contains the linkage between the definition and the use in the specific 773
transaction. The example below shows the use of these embedded references. Given 774
this context information we can then build a query to the registry to retrieve the EDI 775
related information that is contained in the associated igML (see http://www.igML.org) 776
reference XML structure that defines these. 777

Figure 8. Query/Retrieve of cascading reference to igML EDI semantics. 778

ebXML element level
CC definition rules

QIC attlist references to
element definitions

igML reference locators

Inspect1

Retrieve

2

3

4

Locate

namespace of associated
Registry definitions

Physical XML
Transaction
Structures

Physical XML
Element CC
Definitions

Query

Physical XML syntax of
definition
igML EDI element references

XML syntax definition
fragmentQuery

Physical XML of
igML definitions

stored in
Repository

5

XML syntax of igML
semantics

Retrieve 6

 779

Reviewing the reference structure from Example 2 and relating this to Figure 8, we can 780
see how the cascading reference system works in the actual XML syntax. 781

The query/response examples shown next then perform the actual retrievals themselves 782
of the interaction items 2, 3 and 4 from Figure 8. 783

The namespace reference, the Company ID associated QIC reference identifier of 784
‘GCI01503’ and is from the industry domain of ‘GCI’ are used to create the query. 785

Registry Repository Classification /Interfacing version 0.21
 Page 31

SEARCH / HTTP/1.1 786
Content-Type: text/xml 787
Connection: Close 788
Content-Length: 632 789
 790
<?xml version="1.0" ?> 791
 <!-- ebXML Registry Structure Request V0.1 --> 792
 <D:searchrequest xmlns:D="DAV:" xmlns:eb="ebXML:"> 793
 <eb:request> 794
 <eb:access> 795
 <eb:channel>anonymous</eb:channel> 796
 <eb:auth user="klaus" password="76778jjk" /> 797
 </eb:access> 798
 <eb:input> 799
 <eb:match> 800
 <eb:item name="domain" value="GCI"/> 801

<eb:item name="qicref" 802
value=" http://www.catxml.org/qic/datatypes.xml"/> 803

 <eb:item name="qic" value="GCI01503"/> 804
 </eb:match> 805
 <eb:select> 806
 <eb:version>00</eb:version> 807
 <eb:content>fragment</eb:content> 808
 <eb:parent> GCI01503:igML</eb:parent> 809
 </eb:select> 810
 <eb:operation> 811
 <eb:pageSize>10</eb:pageSize> 812
 <eb:hitCount>1</eb:hitCount> 813
 </eb:operation> 814
 </eb:input> 815
 <eb:output type="content" /> 816
 </eb:request> 817
</D:searchrequest> 818

Reviewing the request structure above the <eb:match> block contains references to the 819
items to be used for the query lookup. The qicref item points to the specific registry item 820
to be queried. Notice the repository for this may be a URN that is remotely located and 821
hence the registry will require access to this, or a mirrored copy locally. The <eb:select> 822
block is used in tandem with the <eb:match> block to retrieve just the fragment within 823
the ebXML reference structure that contains the information required. 824

The next example illustrates both the ebXML reference CC structure for the Company ID 825
item and the response that is return from the fragment query above. 826

827

Registry Repository Classification /Interfacing version 0.21
 Page 32

 827

Example 5 ebXML Registry DASL fragment query response structure 828

The XML content that is actually queried is shown first, and then the resulting response 829
details. The same techniques can then be applied to retrieve the actual igML EDI details 830
that are pointed to by this reference content. (For more details of the igML EDI 831
repository syntax, see the site http://www.igML.org). 832

Sample Company ID content. 833

<?xml version="1.0" ?> 834
<!-- 835
* ebXML GUIDE CC element for use with namespace and IDREF * 836
* reference system. * 837
* * 838
 --> 839
<xmlGuide use="element" name="GCI:Catalogues" version="0.1" 840
 xmlns:datatypes="http://www.ebXML.org/guides/GCI_datatypes.xml" 841
 xmlns:qic="http://www.ebXML.org/guides/bizcodes.xml"> 842
 <definitions> 843
 <bizcode qic="GCI01503" qic:base="CompanyID" bizname=" companyID"> 844
 <guide> 845
 <status date="21/02/2000">approved</status> 846
 <maxlength>15</maxlength> 847
 <minlength>1</minlength> 848
 <datatype>string</datatype> 849
 <mask>U15</mask> 850
 <values default=""> 851
 <value /> <!-- allowed values can go here when applicable --> 852
 </values> 853
 <localdescription xml:lang="EN" xml:space="preserve">The reference 854
identifier for a company record in a catalogue entry. 855
 </localdescription> 856
 <fulldescription xml:lang="EN" mimetype="HTML" > 857
 http://www.GCI.org/desc/GCI01503.htm</fulldescription> 858
 <labels> 859
 <label xml:lang="EN">Company ID</label> 860
 </labels> 861
 <seeAlso> 862
 </seeAlso> 863
 <dependencies> 864
 <dependent type="required">GCI01502</dependent> 865
 </dependencies> 866
 <attributes> 867
 <attribute name="context" qic="GCI01570" type="required" /> 868
 <attribute name="idType" qic="GCI01571" type="required" /> 869
 </attributes> 870
 </guide> 871
 <extensions> 872

Registry Repository Classification /Interfacing version 0.21
 Page 33

 <extension type="GCI01503:igML"> <!-- This provides EDI mapping --> 873
 <item type="Format">EDI X12</item> 874
 <item type="Message">823</item> 875
 <item type="SegmentRef">N1</item> 876
 <item type="DictSegment">N1</item> 877
 <item type="DictDataElement">98</item> 878
 </extension> 879
 </extensions> 880
 </bizcode> 881
 882
 <!-- More repository definitions of ebXML CC items can go here when applicable --> 883
 <bizcode qic="GCI01002" qic:base="addrLine" bizname="ADDR:street"> 884
 <guide /> <!-- details go here --> 885
 </bizcode> 886
 <bizcode qic="GCI01003" qic:base="cityName" bizname="ADDR:city"> 887
 <guide /> <!-- details go here --> 888
 </bizcode> 889
 </definitions> 890
 </xmlGuide> 891

 892

The corresponding response mechanism is now shown for the request query in Example 4 893
given previously from the information structure above of the igML extensions 894
information. 895

HTTP/1.1 207 Multi-Status 896
Content-Type: text/xml 897
Content-Length: 2032 898
 899
<?xml version="1.0" ?> 900
 <D:multistatus xmlns:D="DAV:" xmlns:eb="ebXML" 901
xmlns:R="http://www.ebxml.org/dasl-resp-schema"> 902
<D:response> 903
<D:href /> 904
<D:propstat> 905
<D:prop> 906
 <R:author>GCI Administrator</R:author> 907
 <R:title>Catalogue Elements</R:title> 908
 <R:synopsis>Vendor Catalogue Inventory Details</R:synopsis> 909
 <R:last-modified>1999-12-25T112222PST</R:last-modified> 910
 <R:size unit="kilobytes">1</R:size> 911
 <R:extra-info /> 912
 <R:external-doc-id /> 913
 <R:doc-id>11227726644</R:doc-id> 914
 </D:prop> 915
 </D:propstat> 916
 <eb:structure> 917
<![CDATA[918
 <extension type="GCI01503:igML"> <!-- This provides EDI mapping --> 919

Registry Repository Classification /Interfacing version 0.21
 Page 34

 <item type="Format">EDI X12</item> 920
 <item type="Message">823</item> 921
 <item type="SegmentRef">N1</item> 922
 <item type="DictSegment">N1</item> 923
 <item type="DictDataElement">777</item> 924
 </extension> 925
]]> 926
 </eb:structure> 927
 </D:response> 928
</D:multistatus> 929

The next example illustrates a request for a change of content interchange. 930

931

Registry Repository Classification /Interfacing version 0.21
 Page 35

Example 5 ebXML Registry DASL change request structure 931

A change request requires more interaction parameters than the simple query. The 932
taxonomy of the ebXML Registry system itself, based on the OASIS and ISO11179 933
registry functionalities requires that contextual information be associated with the change 934
request to identify the parties concerned, the relation of the content to the registry 935
metamodel, and the status requested for the content itself, and then of course the physical 936
content. 937

The example below illustrated one such implementation approach. To more fully 938
understand the different interaction semantics the DTD for the update request to the 939
registry must be examined to determine the allowed interactions. The DTD is provided 940
following this example and then in the addendum, along with associated documentation. 941

PROPPATCH /channel/docid#DOC_ID HTTP/1.1 942
Host: ebXML.company.com 943
Content-Type: text/xml; charset="utf-8" 944
Content-Length: xxx 945
WWW-Authenticate: xxxxxx 946
 947
<?xml version="1.0" encoding="utf-8" ?> 948
 <d:propertyupdate xmlns:d="DAV:" xmlns:eb="ebXML:" 949
xmlns:R="http://www.ebxml.org/dasl-resp-schema"> 950
 <d:set> 951
<d:prop> 952
 <R:author>Duane Nickull</R:author> 953
 <R:synopsis>This is version 2.1 of this address definition</R:synopsis> 954
 <R:url>http://www.gci.org/ebxml/address.xml</R:url> 955
 </d:prop> 956
 <eb:Request lang="EN"> 957
 <Access> 958
 <Auth userid="scott" passwd="eb7684" session="X25463AS" /> 959
 <Channel name="GCI" code="ALL" /> 960
 <Action verb="Add" noun="Parent" /> 961
 </Access> 962
 <Input> 963
 <Schema /> 964
 <RegistryEntry Version="00" ObjectLocation="" DefnSource="ebXML" 965
 PrimaryClass="defn" SubClass="XML" MimeType="XML" 966
 ExpiryDate="00-00-0000" ResponsibleOrgURN="www.GCI.org:admin" 967
 SubmittingOrgURN="xmlglobal:gci" ItemDomain="GCI" 968
 ItemRegistryURL="http://www.goxml.com/GCI" ItemId="GCI01791"> 969
 <RegistryReference RefDomain="GCI" RefMethod="qic"> 970
 <RefLink> 971
 <RefURL>http://www.goxml.com/GCI/address.xml</RefURL> 972
 <RefURN>xmlglobal:gci</RefURN> 973
 </RefLink> 974
 <RefValue>GCI01791</RefValue> 975
 </RegistryReference> 976
 <ItemClassification>GUIDEstructure</ItemClassification> 977

Registry Repository Classification /Interfacing version 0.21
 Page 36

 </RegistryEntry> 978
 <Package /> 979
 <itemContent type="GUIDEstructure" mimetype="XML"> 980
<![CDATA[981
<?xml version="1.0" ?> 982
 <xmlGuide use="structure" 983
 name="mailingAddress" version="0.1" 984

xmlns:qic="http://www.ebXML.org/guides/elements/postal.xml" 985
xmlns:crm="http://www.crm.org/guides/elements/basics.xml"> 986

 <sequence> 987
 <element name="fullName" qic:base="personDetails" /> 988
 <element name="street" qic:base="postalStreet" 989
 OCCURS="+" LIMIT="5" /> 990
 <element name="city" qic:base="postalCity" 991
 qic:mask="UX19" /> 992
 <element name="ZIP" qic:base="usPostalCode" /> 993
 <element name="state" qic:base="usStateCode" /> 994
 <element name="accountActive" 995
 qic:base="crm:activeStatus" /> 996
 </sequence> 997
 </xmlGuide> 998
]]> 999
 </itemContent> 1000
 </Input> 1001
 <Output /> 1002
 </eb:Request> 1003
 </d:set> 1004
 </d:propertyupdate> 1005

The associated DTD for this interaction is thus the following structure. A graphical 1006
picture of the compound structure is given first, to aid understanding of the actual 1007
mechanisms, and then the physical XML syntax of the DTD itself. 1008

1009

Registry Repository Classification /Interfacing version 0.21
 Page 37

Figure 9. A graphical representation of the Change Request DTD. 1009

 1010

Example of the Change Request DTD structure. 1011

<!-- ebXML Registry Change Request DTD V0.1 --> 1012
<!ELEMENT Request (Access, Input, Output)> 1013
<!ATTLIST Request 1014
 lang CDATA #IMPLIED 1015
> 1016
<!ELEMENT Access (Auth?, Channel?, Action)> 1017
<!ELEMENT Auth EMPTY> 1018
<!ATTLIST Auth 1019
 userid CDATA #IMPLIED 1020
 passwd CDATA #IMPLIED 1021
 session CDATA #IMPLIED 1022
> 1023
<!ELEMENT Channel EMPTY> 1024
<!ATTLIST Channel 1025
 name CDATA #IMPLIED 1026
 code CDATA #IMPLIED 1027
> 1028
<!ELEMENT Action EMPTY> 1029
<!ATTLIST Action 1030
 verb (Add | Delete | Replace | Supercede | Version) #REQUIRED 1031
 noun (Parent | Fragment | URL | Content) #REQUIRED 1032
> 1033
<!ELEMENT Input (Schema?, RegistryEntry?, Package?, itemContent)> 1034
<!ELEMENT itemContent (#PCDATA)> 1035
<!-- Open element, resolved at runtime --> 1036
<!ATTLIST itemContent 1037
 type (URL | URN | CDATA | MIME | Binary) #REQUIRED 1038
 mimetype CDATA #REQUIRED 1039

Registry Repository Classification /Interfacing version 0.21
 Page 38

> 1040
<!ELEMENT Output (Schema?, PostProcess?)> 1041
<!ELEMENT Schema (#PCDATA)> 1042
<!ELEMENT PostProcess (#PCDATA)> 1043
<!-- Reference definitions of classification code lists --> 1044
<!ENTITY % assocTypeList "uses | supersedes | contains | related"> 1045
<!ENTITY % contactAvailList "public | priv | prot "> 1046
<!ENTITY % contactRoleList "admin | all | tech"> 1047
<!ENTITY % defnSourceList " OASIS | IMS | IEEE_LOM | ebXML | UDDI | 1048
Industry "> 1049
<!ENTITY % stabilityList "comp | dynm | stat"> 1050
<!ENTITY % orgRoleList " SO | RO | RA "> 1051
<!ENTITY % primaryClassList "defn | inst | pkg | other"> 1052
<!ELEMENT RegistryEntry (RegistryReference, ItemClassification)> 1053
<!ATTLIST RegistryEntry 1054
 Version CDATA #IMPLIED 1055
 ObjectLocation CDATA #REQUIRED 1056
 DefnSource (%defnSourceList;) #REQUIRED 1057
 PrimaryClass (%primaryClassList;) #REQUIRED 1058
 SubClass CDATA #IMPLIED 1059
 MimeType CDATA #REQUIRED 1060
 ExpiryDate CDATA #IMPLIED 1061
 ResponsibleOrgURN CDATA #IMPLIED 1062
 SubmittingOrgURN CDATA #REQUIRED 1063
 ItemDomain CDATA #IMPLIED 1064
 ItemRegistryURL CDATA #REQUIRED 1065
 ItemId ID #IMPLIED 1066
> 1067
<!ELEMENT RegistryReference (RefLink, RefValue)> 1068
<!ATTLIST RegistryReference 1069
 RefDomain (GCI | ebXML | OAG | Other) #REQUIRED 1070
 RefMethod (qic | qicType | mask | IDREF | XLink | XPath | SQL) 1071
#REQUIRED 1072
> 1073
<!ELEMENT RefLink ((RefURL | RefURN)+)> 1074
<!ELEMENT RefURL (#PCDATA)> 1075
<!ELEMENT RefURN (#PCDATA)> 1076
<!ELEMENT RefValue (#PCDATA)> 1077
<!ELEMENT Package (Domain, RefLink, RefTopicMap)> 1078
<!ELEMENT Domain (#PCDATA)> 1079
<!ELEMENT RefTopicMap (#PCDATA)> 1080
<!ELEMENT ItemClassification (#PCDATA)> <!-- reference to 1081
classification --> 1082

This DTD makes reference to the classification structure. This is not shown. The 1083
classification structure can be an ebXML defined one, such as BP ebXML, CC ebXML 1084
or GUIDE ebXML, or can be a user defined classification structure. See the 1085
Registry/Repository classification specifications for how to define a classification 1086
structure layout. It is anticipated that Registries will contain sets of pre-defined 1087
classification structures for the content they are storing in their repositories to simplify 1088
use of the registry and to ensure consistent content and retrievals. 1089

The next section reviews the actual linking mechanisms that support the registry transport 1090
layer to resolve URL and URN references within any query/change/response interactions. 1091

1092

Registry Repository Classification /Interfacing version 0.21
 Page 39

3.4 The ebXML RegRep linking 1092

The linking mechanism used in ebXML RegRep is based on either htttp URL links or 1093
XML namespaces. The reserved word eb namespace declared in the root tag of the XML 1094
transaction instance establishes the reference to the next ebXML RegRep content layer as 1095
needed. Therefore a XML transaction will use the eb namespace to reference the 1096
structure schema that defines the structural rules, and the eb structure will in turn use its 1097
own element namespace to locate the default element definitions associated with the 1098
structure. The element definitions can also optionally access the datatypes namespace to 1099
locate datatyping information. This provides an extensible datatype model. 1100

However, fragments that are themselves included, may not have further include 1101
references within them, thus ensuring that only one level of nesting is provided. 1102
Furthermore, permitting only the single ebXML namespace with a single control 1103
structure ensures that the true structure of transactions is available and exposed. This 1104
contrasts with other early schema implementations that used in-line namespace 1105
definitions to retrieve multiple structure schemas, thus creating a system where the true 1106
transaction structure could not be determined. The ebXML RegRep avoids this by only 1107
allowing the single guide namespace for including the structure linkage. 1108

This linkage mechanism is designed to be simple and business functional and to avoid 1109
any complex constructs that make registry implementation and behaviour complex or 1110
uncertain. This necessarily restricts the complex use of cascading links, and in 1111
particularly linking can only be nested one layer deep, and all recursive references are 1112
explicitly not provided. 1113

3.5 Type systems 1114

The ebXML RegRep element definitions use basic business datatypes. All of these are 1115
supported by the current W3C datatyping proposal, however the W3C has extended 1116
complex behaviours in their datatyping. Any item that does not have a datatype 1117
explicitly assigned is treated as a simple string by default. 1118

3.6 Relationship of and use of Bizcodes 1119

The Qualified Indicator Code (QIC) is tied into the Bizcode mechanism that provides the 1120
linkage between ebXML classification structures and the associated element definitions 1121
and is designed to be a neutral reference code. Use of neutral reference codes is already 1122
an established practice within dictionaries of industry element definitions. Therefore 1123
many industries already have codes that they can use as QIC references. 1124

The preferred Bizcode QIC structure is a three-letter code, followed by a five-digit 1125
number, where the three-letter code denotes the industry or group assigning the codes, 1126
and the five-digit number is a sequentially assigned value. It is anticipated that as part of 1127
the ebXML repository technical specifications there will also be guidelines established 1128

Registry Repository Classification /Interfacing version 0.21
 Page 40

for managing globally unique names under which Bizcode QIC references can be 1129
classified. 1130

Currently the barcodes used for product labelling are managed in a similar fashion by 1131
having formally registered barcodes alongside locally defined barcodes. With Bizcode 1132
QIC labels, since they are tightly coupled to an ebXML classification structure and also 1133
stored within an ebXML element repository this already provides excellent separation to 1134
avoid conflicts on QIC values assigned within an industry. Also, unlike barcodes where 1135
there are many tens of millions already assigned, Bizcodes required a much more limited 1136
number since they are reusable across many products. An example is the food industry 1137
where there are over seven million barcodes in use, but less than ten thousand unique 1138
element definitions (product attributes) are being used to describe all those products. 1139

The current ebXML GUIDE element classification structure is designed to be compatible 1140
with ISO11179 based reference registries. The role of ISO11179 registries is to 1141
harmonize information classification within a corporation or large government agency for 1142
human analytical and business system design purposes. The role of ebXML repositories 1143
extends beyond that to include XML based machine-to-machine information interchanges 1144
that reference XML repositories via an XML based API and interface specifications. 1145

Therefore ebXML GUIDE classification can be used in tandem with ISO11179, where 1146
the ISO registry manages the content that the ebXML system exposes to ebXML aware 1147
systems. 1148

1149

Registry Repository Classification /Interfacing version 0.21
 Page 41

 1149

4. Tutorial and Use Case 1150

This section presents a short example by the way of an illustration of how to work 1151
with and prepare an ebXML RegRep transaction. This section should reference the 1152
Tokyo POC implementation documentation. 1153

5. Addendum 1154

A 1. References 1155

W3C Working Draft "XML Schema Part 1: Structures". This is work in progress. 1156

W3C Working Draft "XML Schema Part 2: Datatypes". This is work in progress. 1157

A 1.1 Notes on URI, XML namespaces & schema locations 1158

Namespace use to be defined with regard to the W3C namespace recommendation. 1159

A 1.2 Relative URIs 1160

Throughout this document you see fully qualified URIs used as references. The use of a 1161
fully qualified URI is simply to illustrate the referencing concepts. 1162

 1163

