[image: image8.jpg]Creating A Single Global Electronic Market

ebXML Transport, Routing & Packaging
Reliable Messaging Specification

Working Draft 22-September-2000

This version:

ebXML Reliable Messaging Specification v0-078
Latest version:

N/A

Previous version:

v0-074

Editor:

Jim Hughes <jfh@fs.fujitsu.com>

Authors:

Masayoshi Shimamura <shima@rp.open.cs.fujitsu.co.jp>
Contributors:

See Acknowledgements
Abstract

This document defines the structures and processes used to provide Reliable Messaging within the ebXML Transport, Routing and Packaging architecture.

Status of this Document
This document represents work in progress and no reliance should be made on its content.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in IETF RFC 2119.
Editor Note 1: Significant changes since the previous version include:
- deleted RM-Group semantics
- added Recovery Sequences for each error
- added definition of “AtMostOnce” semantics and “Unspecified” semantics
- added definition of size of Sequence Number
- added informative text which describes the relationship between an MS ack and a Transport protocol ack

Table of Contents

31
Introduction

31.1
Purpose and Scope

31.2
Goal and Policy

31.3
Features (this section will be completed once other parts are done)

32
Reliable Messaging Architecture

32.1
Basic Concepts

52.2
Message Envelope Elements used for Reliable Messaging

52.2.1
Message Header – Message Data Element

52.2.2
Message Header – Reliable Messaging Info Element

52.2.3
Routing Header

62.3
Message Transfer Sequence

82.4
Recovery Sequence for Lost Messages

82.5
Detection of Repeated Messages by the Receiver (non-normative)

92.6
Reliable Messaging Acknowledgement and Error Messages

92.6.1
General

92.6.2
Reliable Messaging Formats

102.6.3
Communication Protocol Errors

112.6.4
ebXML Messaging Errors

112.6.5
Timeout

122.6.6
Transient Errors

132.6.7
Acknowledgement Message

132.6.8
Maximum Number of Retries and Retry Interval

143
Relationship with Transport Protocols

143.1
HTTP

153.2
SMTP

153.3
FTP

154
Reliable Routing

154.1
Store and Forward Semantics

164.2
Routing Information

164.3
Error Handling in Routing

165
Trading Partner Agreement (TPA) Considerations

176
Changes to Current ebXML Specifications

176.1
Changes to ebXML Messaging Service Specification v0-1

176.2
Changes to Other ebXML Specifications

177
Definition of terms

188
References

189
Acknowledgements

1810
Authors' Address

 Introduction

1.1 Purpose and Scope
This specification defines the Reliable Messaging function used between ebXML Messaging Services. It responds to the requirements for Reliable Messaging found in section 4.2(1) of Reference [1]. Material from this draft document will be incorporated into the Messaging Services Specification at a future date.

1.2 Goal and Policy
This ebXML Reliable Messaging Specification describes how to provide reliable message transmission between two Messaging Services when the “From” Party sending a message through these Messaging Services specifies “AtMostOnce” delivery semantics in the Message Header.
“Reliable Messaging” means that the Sending Party’s Messaging Service Handler will obtain a positive confirmation, either through a Messaging Service Level Acknowledgment Message, or by time-out, that the message was or was not delivered into the Receiving Party Messaging Service Handler’s persistent storage. Further message processing at the Receiving Party (including generation of Business Process Level Acknowledgment Messages) is not within the scope of this Reliable Messaging Specification.

All ebXML Messaging Service implementations SHALL support the Reliable Messaging function.

1.3 Features (this section will be completed once other parts are done)

· Item…

· Item…

2 Reliable Messaging Architecture
2.1 Basic Concepts

To achieve reliable messaging between Parties, this specification defines a process which enables the Parties’ ebXML Messaging Services to communicate with each other using “at most once” semantics, coupled with a timeout to determine lost messages.

For the purposes of this document, the term “Sender” means the Sending Party’s Messaging Service that sends the message on the underlying message transport, and “Receiver” means the Messaging Service used by the Receiving Party. The term “From-Party” means the party that originally prepared the message and provided the message to its Messaging Service, and the term “To-Party” means the party that was identified by the From-Party as the final recipient of the message.

For example, a simple message transmission using two Message Service Handlers and one transport is shown in Figure 2-1.

[image: image1.wmf]

“From” Messaging

Service Handler

“Sender”

“Receiver”

From

-

Party

Figure

1

To

-

Party

“To” Messaging

Service Handler

TRANSPORT

Figure 2-1: Simple Message Transmission

Reliable Messaging consists of the following basic concepts:

1) Messages are sent and received through Messaging Service Handlers (MSH), which function on behalf of their respective Parties (and Business Processes). With respect to a particular underlying transport, each MSH can be identified as a “Sender” or a “Receiver”.

2) A message is identified by its MessageId field, which is contained in the Message Header’s MessageData element created by the Sender.

3) When the From-Party requests Reliable Messaging semantics for the message, the Sender sets the DeliverySemantics field in the ReliableMessagingInfo element of the Message Header to “AtMostOnce”.

4) Reliable Messaging processing requires no changes to the Message Header during transmission, once the Message Header is prepared by the From-Party’s MSH.

5) Reliable Messaging uses a “Routing Header” contained in the Message Envelope.

Editor Note 2: In a later section of this draft, it is proposed that the single Routing Header Data Element is updated as the message moves between intermediate MSHs. An alternative is that one Routing Header Data Element could be added to the Routing Header for each Sender-Receiver-Transport triplet as the message moves from the From-Party to the To-Party through a sequence of MSHs. This would add complexity but would provide an audit trail.

6) A Reliable message indicated by setting the DeliverySemantics field to AtMostOnce.

7) For each reliable message, the Sender generates a Sequence Number that
thatt is unique to the Sender-Receiver-Transport triplet. For subsequent reliable messages, the Sender increments the Sequence Number placed in that message. The Sequence Number is contained in the Routing Header Data Element.

8) When the Receiver receives a reliable message, the Receiver compares the received reliable message’s Sequence Number with the previous reliable message’s Sequence Number, if available. If the newly received reliable message’s Sequence Number is one greater than the previous reliable message’s Sequence Number, the Receiver signals a normal completion of the reliable message transmission back to the Sender by sending an “Acknowledgement” message. In any other case, the Receiver sends an error message to the Sender and the Sender re-sends (at least) the missing message.

9) Within a reliable message transmission, the Receiver can determine whether a received message is a duplicate message or not by using the MessageId and/or the Sender-Receiver-Transport unique Sequence Number. If the received message is a duplicate, the Receiver discards the message. If the message is not a duplicate, the Receiver stores the message in its persistent storage and delivers the message to a higher processing level.
10) To detect loss of a reliable message, the Sender sets a time-out for that message. If the transmitted reliable message is lost due to system or communication failure, the Sender will re-send this message the number of times specified in the Trading Partner Agreement (TPA) to the Receiver before reporting failure to the From-Party.
11) A Messaging Service level Acknowledgement is sent from the Receiver to the Sender for every received message.

2.2 Message Envelope Elements used for Reliable Messaging
2.2.1 Message Header – Message Data Element

Reliable Messaging uses the MessageId field to uniquely identify the message.

2.2.2 Message Header – Reliable Messaging Info Element

When the From-Party requests Reliable Messaging semantics for the message, the Sender sets the DeliverySemantics field to “AtMostOnce”. In these semantics, an Acknowledgment Message and the recovery sequence described in this specification are used. The Sequence Number field in the Routing Header Data Element is utilized. All the messages are stored in temporary persistent store in the Sender and the Receiver for recovery. In Reliable Messaging semantics, the ordering of all reliable messages is guaranteed.

When the From-Party requests Unreliable Messaging semantics for the message, the Sender sets the DeliverySemantics field to “Unspecified”. In these semantics, an Acknowledgment Message is not used during message transfer and lost messages are not recovered. The Sequence Number field does not have a value in the Routing Header Data Element, and Sender and Receiver are not required to use temporary persistent store.

Editor Note 3: In Reliable Messaging semantics, message delivery is guaranteed (except for an error). Since a lost message is re-sent by the MSH automatically, the Sending Party does not need to re-send a lost message unless it wants to attempt a retry after all the MSH-level attempts fail. Should the semantics be called “ExactlyOnce” instead of “AtMostOnce”?

Editor Note 4: The semantics of “Unspecified” may be unclear, as the MSH can’t decide whether the semantics are reliable or not. If the semantics mean unreliable messaging, should there be another name such as “BestEffort”?

2.2.3 Routing Header

For each Sender-Receiver-Transport triple used to transmit the message, the Sender SHALL provide a Routing Header, which includes the mandatory elements shown in Table 2‑1.

Editor Note 5: There is a need to identify the particular Messaging Service instance that is processing the message on behalf of the From-Party or To-Party. A MessageServiceId is used for this. If a multi transport function and/or multi path function is really needed, MessageServiceId also might be needed.

Editor Note 6: The mandatory (but not optional) routing header elements are required in all instances, even when the message is not sent with Reliable Messaging semantics. This permits audit functions (to be further defined in the Messaging Service Specification).

Table 2‑1: Mandatory Routing Header Data Elements

	Element
	Outline Description

	SenderID
	Sender’s Messaging Service Handler logical address, using PartyID format (context and text value)

	ReceiverID
	Receiver’s Messaging Service Handler logical address, using PartyID format (context and text value)

When a Routing Header is used for a message sent with Reliable Messaging functions, two additional Routing Header Data Elements SHALL be added to the Routing Header by the Sender. They are described in Table 2‑2.

Table 2‑2: Additional Routing Header Data Elements

	Element
	Outline Description

	Sequence Number
	Integer value which is incremented (e.g. 1, 2, 3, 4, ...) for each Sender-prepared message sent to the Receiver using a particular transport. The Sequence Number takes a value in the range 1 to 232-1 (4,294,967,295). In following cases, the Sequence Number takes value “1”:

· First message from a Sender to a Receiver using a particular transport

· First message after wraparound (next value after 232-1)

· First message after removing Sequence Number information in the Sender (Sender MAY remove Sequence Number information when it has no messages which were sent to the Receiver for long time)

The Receiver may use this Sequence Number to check for repeated messages, or the Receiver may use the MessageId.

2.3 Message Transfer Sequence
A reliable message SHALL be sent and a single acknowledgement message returned to the Sender once the reliable message has been received by the Receiver. As a message is received, the Receiver MAY process it appropriately, usually by passing the message to the higher-level “To-Party”.

With respect to a particular Sender, Receiver and transport triple, transmission of one reliable message SHALL be completed before another reliable message may be sent.

[image: image2.wmf]

Sender

Receiver

If reply is an Acknowledgment Message, Sender may

remove the transmitted message from temporary

persistent storage; otherwise, an error hand

ler is

invoked

Message

Receive and store the

message in persistent

storage, pass to “To

-

Party”

Check

reply

Send

a

 message with Sequence

N

umber

 and MessageID

Return reply status

Acknowledgment Message

Message

Normal Message

with Sequence Number

Copy

one

 message

from persistent

storage

Receiver’s temporary

persistent store

5

1

2

3

4

 Figure 2‑2: Reliable Message Transfer Sequence
Reliable Messaging processing is shown in the following sequence:

(1)
Message copy

Sender initially stores messages passed from the ebXML “From-Party” in temporary persistent storage, and then copies the stored message for message transfer.

(2)
Sending message

A Reliable message has DeliverySemantics = AtMostOnce set, and receipt of a message with this value notifies the Receiver of Reliable Messaging. The message is identified by a Message Identifier in the Message Header and a Sequence Number in the Routing Header.
(3)
Receiving, checking and storing message

The Receiver receives the reliable message and then checks whether the message is repeated or not by using the Sequence Number and/or Message-Id. If it is not a repeated message, the Receiver stores the message into persistent storage and processes the message appropriately.

If it is a repeated message, the Receiver discards the message.

(4)
Acknowledgment by Receiver
The Receiver returns an Acknowledgment Message to the Sender.

(5)
Sender checks reply and removes transferred message
Sender checks the Acknowledgement Message from the Receiver. If the reply is the appropriate Acknowledgement Message for the transferred message, Sender may remove the transferred message from Sender’s persistent storage if the message is no longer needed for some other Messaging Service function.

2.4 Recovery Sequence for Lost Messages

[image: image3.wmf]Sender

Receiver

Normal Message

Sequence Number = 5

Acknowledgment

Message

Normal Message

Sequence Number =

6

Normal Message

Sequence Number =

6

Acknowledgment

Message

Detect timeout

Figure 2‑3: Recovery Sequence for Lost Messages

If the sent message does not reach the Receiver, the Sender detects a timeout while waiting for an Acknowledgement Message, since the Receiver does not return the Acknowledgement Message. The Sender’s recovery handler re-sends last message again. When the Receiver receives the re-sent message, the Receiver checks whether the received message is a repeated message or not and returns an Acknowledgement Message to the Sender.

2.5 Detection of Repeated Messages by the Receiver (non-normative)

Detection of repeated messages in the Receiver using Message Identifiers and/or Sequence Numbers is implementation dependent. However, an effective detection logic can be suggested which uses Sequence Numbers.
The Receiver receives the reliable message and then compares the received reliable message’s Sequence Number with the immediately previous reliable message’s Sequence Number:

(1)
Received message’s Sequence Number == Previous message’s Sequence Number + 1

The message is not a repeated message. The Receiver stores the message into persistent storage, processes the message appropriately and returns an Acknowledgement Message.

(2)
Received message’s Sequence Number == Previous message’s Sequence Number
The message is a repeated message. The Receiver discards the message and returns Acknowledgement Message. [? Does this mean duplicate Ack messages sent?]

	Note: When both the received message’s Sequence Number and the previous message’s Sequence Number are 1, the Receiver will have to use the MessageId instead of a Sequence Number to check for a repeated message. This situation happens only when following sequence occurs (this is a very unusual situation):

a) The Sender sends only one message to the Receiver, and it’s the first message for the Sender-Receiver-Transport triplet. There is no subsequent message for long time.

b) Since there is no other message that should be sent to the Receiver for long time, the Sender might remove its Sequence Number information for the Receiver. But the Receiver does not remove its Sequence Number information for the Sender.

c) After that, the Sender is given a message from the sending Party that should be sent to the Receiver. Since the Sender’s Sequence Number information was previously removed, the Sender sends the message to the Receiver using Sequence Number 1.

(3)
Received message’s Sequence Number == 1 && not case (2)

The message is not a repeated message. The Receiver stores the message into persistent storage, processes the message appropriately and returns an Acknowledgement Message.

(4)
Any other case
It means that the Sequence Number value is invalid. The Receiver discards the message and returns an error message.
2.6 Reliable Messaging Acknowledgement and Error Messages

2.6.1 General

The Messaging Service handles the following errors:

(1)
Communication Protocol Errors

(2)
ebXML Messaging Errors

(3)
Timeout
(4)
Transient Errors

The recovery handler in the Sender executes a Messaging Service recovery sequence for all errors above except for “(2) ebXML Messaging Errors”, because (2) is processed in a level higher than the recovery handler.

2.6.2 Reliable Messaging Formats

Messages used to report Reliable Messaging acknowledgements and errors between Messaging Service Handlers are formatted according to Reference [2], with specific fields completed as shown below. The SenderID and ReceiverID fields in the Router Header identify the Messaging Service Handlers that are using Reliable Messaging semantics.

Each reliable message is unique to a Sender-Receiver-Transport triple, as discussed in Base Concepts, above. For the purposes of describing error and acknowledgement messages, the following terms are used:

· Original-Sender means the “From” PartyID contained in the reliable message

· Original-Recipient means the “To” PartyID contained in the reliable message

Editor Note 7: Not sure if we will need these definitions above, but they might be useful when multi-node networks are discussed. The error/ack message is sent between MSHs and not the PartyIDs.

All acknowledgement and error messages SHALL contain at least these values:

· “From” PartyID = ReceiverID shown in the Routing Header Data Element

· “To” PartyID = SenderID shown in the Routing Header Data Element

· TPAId and ConversationID are those used in the reliable message

· ServiceInterface and Action are not present in the reliable message

· RefToMessageId = MessageId of the reliable message

· DeliverySemantics = “Unspecified”

2.6.3 Communication Protocol Errors
When the Sender or the Receiver detects a transport protocol level error (such as an HTTP, SMTP or FTP error), the appropriate transport recovery handler will execute a recovery sequence. No Reliable Messaging functions are involved in this recovery sequence, since it happens at a lower level.
However, if the Sender detects a transport protocol level error that is unrecoverable at the transport protocol level, or receives the error message “Communication Protocol Errors”, the appropriate recovery handler in the Sender executes a Messaging Service recovery sequence. This recovery sequence SHALL use a retry interval and SHALL re-send the last message to the Receiver. The format of the re-sent message is exactly the same as the original message. In the recovery sequence or after the recovery sequence:

· If the Sender detects a transport protocol level error, which is unrecoverable at the transport protocol level, or receives the error message “Communication Protocol Errors” again, the recovery handler repeats the recovery sequence before returning an Acknowledgment Message or an error message except for Communication Protocol Errors.

· If the Sender detects or receives another error, the recovery handler executes an appropriate recovery sequence for the error.

· If the Sender receives an Acknowledgment Message, the message transmission is completed.

[image: image4.wmf]

Sender

Receiver

Sequence Number

 = 5

Sequence Number

 = 6

Communication Protocol Errors

Repeat

the recovery

sequence when

same error occurs

Retry In

t

erval

Sequence Number

 =

6

Re

-

send

the

last

message

Figure 2‑4: Recovery Sequence for Communication Protocol Errors

2.6.4 ebXML Messaging Errors
When the Sender receives error message “ebXML Messaging Errors”, the recovery handler passes this error to a higher-level and continues message transfer sequence.
2.6.5 Timeout
When the Sender detects a timeout while waiting for an Acknowledgement Message from the last sent message, the appropriate recovery handler in the Sender executes a Messaging Service recovery sequence. The timeout value is defined in the TPA as Timeout. This recovery sequence SHALL re-send the final message to the Receive and SHALL use a retry interval. The format of the re-sent message is exactly the same as the original message. In the recovery sequence or after the recovery sequence,

· If the Sender does not receive any error message or Acknowledgment Message in the retry interval, the recovery handler repeats the recovery sequence before returning an Acknowledgment Message or an error message.

· If the Sender detects or receives another error, the recovery handler executes the appropriate recovery sequence for the error.

· If the Sender receives an Acknowledgment Message in the recovery sequence, the message transmission is completed.

[image: image5.wmf]

Sender

Re

-

send the last

message

Detect timeout

Sequence Number = 5

Retry Interval

Receiver

Repeat the recovery

sequence when

same error occurs

Sequence Number = 6

Sequence Number = 6

Figure 2‑5: Recovery Sequence for Timeout

2.6.6 Transient Errors
When the Sender receives the error message “Transient Errors”, the appropriate recovery handler in the Sender executes a Messaging Service recovery sequence. The recovery sequence SHALL suspend sending of further messages to the Receiver for the period specified in the MinRetrySecs field in the error message. If the MinRetrySecs field does not exist in the error message, RetryInterval specified in TPA is used as the suspending time. After the suspension, the Sender’s recovery handler SHALL re-send the last sent message to the Receiver. The format of the re-sent message is exactly the same as the original message. In the recovery sequence or after the recovery sequence,

· If the Sender receives the error message “Transient Errors” again, the recovery handler repeats the recovery sequence before returning an Acknowledgment Message or an error message except for Transient Errors.

· If the Sender detects or receives another error, the recovery handler executes the appropriate recovery sequence for the error.

· If the Sender receives an Acknowledgment Message, the message transmission is completed.

[image: image6.wmf]

Sender

Receiver

Sequence Number = 5

Sequence Number = 6

Transient Errors

Sequence Number = 6

Re

-

send the last

message

Suspend

Repeat the recovery

sequence when

same error occurs

Figure 2‑6: Recovery Sequence for Transient Errors
2.6.7 Acknowledgement Message

The Receiver’s Messaging Service Handler sends this message to the Sender’s Messaging Service Handler when the message is received. There is no reply to this message from the Sender’s Messaging Service Handler. Since the Sender’s Messaging Service Handler will not initiate a new message transmission until a current message transmission has been correctly received, there is no possibility that the Receiver will detect a non-sequential Sequence Number when determining if the received message is repeated message or not using Sequence Number. The MessageType SHALL be “Acknowledgement”.

There is no Payload and no business level response information.

2.6.8 Maximum Number of Retries and Retry Interval

The retry interval is defined in the TPA as RetryInterval. When the total number of retries in a reliable message transmission reaches a maximum number defined in the TPA as Retries and the last error is still not resolved, the recovery handler will:

(1) Suspend sending messages to the Receiver

(2) Reports this incident to a higher-level so that system administrator can resolve this incident

When the System administrator resolves the incident, the recovery handler will reset the retry counter to zero and then re-start message transfer sequence from the uncompleted reliable message transmission.

[image: image7.wmf]

Sender

Receiver

Sequence Number = 6

Communication Protocol Errors

Sequence Number = 6

Retry

 Interval

Communication Protocol Errors

Sequence Number = 6

Detect timeout

First retry

(for Communication

Protocol Errors)

Second retry

(for Communication

Protocol Errors)

Third retry

(for Timeout)

No reply in Retry Interval

Suspe

nd and Report this incident

System administrator resolves this incident

Sequence Number = 6

Reset retry counter to 0,

and then

re

-

start message

transfer from the

uncompleted message

transmission

Retry Interval

Sequence Number = 6

Sequence Number = 7

Sequence Number = 5

Figure 2‑7: Repeat of Recovery Sequence (specified maximum number of retries is 3)

3 Relationship with Transport Protocols
The ebXML Messaging Service messages are carried by Transport Protocols as shown in the following sections.

3.1 HTTP
All ebXML Messaging Service messages are carried by an HTTP Request Message (POST method). The HTTP Response Message to the HTTP Request Message has no entity body.

Table 3‑1 Relationship with HTTP

	ebXML Messaging Service message
	HTTP

	Normal Message
	· Request Message (POST method) from Sender to Receiver

· Response Message to the Request Message has no entity body

	Acknowledgement Message
	· Request Message (POST method) from Receiver to Sender

· Response Message to the Request Message has no entity body

	Error Message
	· Request Message (POST method) from Receiver to Sender

· Response Message to the Request Message has no entity body

3.2 SMTP
All ebXML Messaging Service messages are carried as mail in an SMTP Mail Transaction.

Table 3‑2 Relationship with SMTP

	ebXML Messaging Service message
	SMTP

	Normal Message
	Mail Transaction from Sender to Receiver

	Acknowledgement Message
	Mail Transaction from Receiver to Sender

	Error Message
	Mail Transaction from Receiver to Sender

3.3 FTP

[TBD]

4 Reliable Routing

4.1 Store and Forward Semantics

Reliable Routing consists of a series of individual simple Reliable Messaging transmissions between a Sender and a Receiver. These Store and Forward semantics consist of the following sequence:

(1) Sender A transfers a message to Receiver B using Reliable Messaging.
(2) After completion of the reliable messaging transmission between Sender A and Receiver B, Sender B transfers the received message to Receiver C using Reliable Messaging.
(3) After completion of the reliable messaging transmission between Sender B and Receiver C, Sender C transfers the received message to Receiver D using Reliable Messaging.
(4) [Repeat until end of routing]

[image: image8.jpg]Figure 4‑1 Reliable Routing
4.2 Routing Information

The first Sender (From-Party’s Sender) specifies the From/To elements in the Header, and the SenderID/ReceiverID elements in the Routing Header for first message transferred to the Router.

When the message is forwarded between Routers, the Router updates the SenderID/ReceiverID elements in the Routing Header for message forwarding to the next Router.
Editor Note 8: As an alternative, subsequent Routers could add Router Headers to the message, which would permit auditing of the message transfer.

4.3 Error Handling in Routing

When message forwarding to a subsequent Router is not available or fails from a particular Router, and if that Router received the message from previous Sender, the Router’s Receiver returns an ErrorMessage (Transient Error) to the Sender instead of an Acknowledgement Message. By this rule, the Sending Party will not receive a Messaging Service acknowledgement of successful transmission until the message has actually been received by the Receiving Party’s Message Service Handler.

5 Trading Partner Agreement (TPA) Considerations
Reliable Messaging uses the following arguments that are specified in the TPA.

Table 5‑1 Reliable Messaging related arguments specified in the TPA

	Argument
	Outline Description

	Timeout
	Wait time for any response from the Receiver.

· Integer value specifying a number of seconds
· After sending a Normal Message, the Sender SHALL wait for any response (MS Acknowledgement or Error Message) for specified time before start of retry

	Retries
	Maximum number of retries.

· Integer value specifying the number of retries
· The Sender SHALL repeat retries the specified number of times until the Sender receives an MS Acknowledgement Message
· If the Sender does not receive an MS Acknowledgement Message after the maximum number of retries, the Sender SHALL notify the incident to the higher level (application and/or system admin)

	RetryInterval
	Wait time between retries.

· Integer value specifying a number of seconds
· After a retry, the Sender SHALL wait for a response (MS Ack or Error Message) for specified time before start of next retry

6 Changes to Current ebXML Specifications
Editor Note 9: This section will be deleted when RM material is moved into the Messaging Service Specification.

6.1 Changes to ebXML Messaging Service Specification v0-1
· Routing Header and Routing Header Data Elements will included in the Message Envelope.

· (others to be determined when the new specification is finished)
6.2 Changes to Other ebXML Specifications

There are no changes to other ebXML specifications.
7 Definition of terms

· Exactly Once

A message delivery semantic that means:

· Message delivery is guaranteed

· A message reaches the Receiving Party only once

· Even if a message does not reach the Receiving Party, Sending Party does not need to execute retry by itself (retry is automatically executed by the messaging service).

· At Most Once

A message delivery semantic that means:

· Message delivery is not guaranteed

· A message reaches the Receiving Party either once, or not at all

· When a message is not delivered, the Sending Party can detect the incident

· In the incident, if the Sending Party want to guarantee message delivery, the Sending Party has to execute retry by itself

· Best Effort

A message delivery semantic that means:

· Message delivery is not guaranteed

· A message reaches the Receiving Party either once, or not at all

· Even if message does not reach the Receiving Party, the Sending Party can not detect the incident

8 References

[1]
ebXML Transport, Routing and Packaging: Overview and Requirements, version 0-96, 26 May 2000

[2]
ebXML Transport, Routing and Packaging: Messaging Service Specification, version 0-21, 13 September 2000
9 Acknowledgements

The author wishes to acknowledge the members of the ebXML TR&P who commented on Fujitsu’s proposal in the face-to-face meetings and in e-mail.
10 Authors' Address

Masayoshi Shimamura
Fujitsu Limited
Shinyokohama Nikko Bldg., 15-16, Shinyokohama 2-chome
Kohoku-ku, Yokohama 222-0033, Japan
Telephone: +81-45-476-4590
E-mail: shima@rp.open.cs.fujitsu.co.jp

� EMBED PowerPoint.Slide.8 ���

�PAGE \# "'Page: '#'�'" �� consider abstracting “Recovery Counter” – implementation detail?

ebXML Reliable Messaging Specification v0-078 (22 September 2000)
16

[image: image9.png]\QXML

[image: image10.wmf]Message

Message

1

2

3

From : A

To : D

SenderID : A

ReceiverID : B

From : A

To : D

SenderID : B

ReceiverID : C

From : A

To : D

SenderID : C

ReceiverID : D

From and To

in Header

SenderID and ReceiverID

in Routing Header

Ack

Message

Ack

Ack

Message

From

-

Party

[PartyID = A]

Router

[PartyID = B]

Sender A

Receiver/Sender B

To

-

Party

[PartyID = D]

Receiver D

Router

[PartyID = C]

Receiver/Sender C

[image: image11.wmf]Message

Message

1

2

3

From : A

To : D

SenderID : A

ReceiverID : B

From : A

To : D

SenderID : B

ReceiverID : C

From : A

To : D

SenderID : C

ReceiverID : D

From and To

in Header

SenderID and ReceiverID

in Routing Header

Ack

Message

Ack

Ack

Message

From

-

Party

[PartyID = A]

Router

[PartyID = B]

Sender A

Receiver/Sender B

To

-

Party

[PartyID = D]

Receiver D

Router

[PartyID = C]

Receiver/Sender C

_1031223327.doc

Re-send the last message

Sequence Number = 6

Retry Interval

Repeat the recovery sequence when same error occurs

Communication Protocol Errors

Sequence Number = 6

Sequence Number = 5

Receiver

Sender

_1031223944.doc

Sequence Number = 6

Sequence Number = 6

Repeat the recovery sequence when same error occurs

Receiver

Retry Interval

Sequence Number = 5

Detect timeout

Re-send the last message

Sender

_1031224181.doc

Sequence Number = 5

Sequence Number = 7

Sequence Number = 6

Retry Interval

Reset retry counter to 0, and then

re-start message transfer from the uncompleted message transmission

Sequence Number = 6

System administrator resolves this incident

Suspend and Report this incident

No reply in Retry Interval

Third retry�(for Timeout)

Second retry�(for Communication Protocol Errors)

First retry�(for Communication Protocol Errors)

Detect timeout

Sequence Number = 6

Communication Protocol Errors

Retry Interval

Sequence Number = 6

Communication Protocol Errors

Sequence Number = 6

Receiver

Sender

_1031229337.ppt

Message

Message

From : A

To : D

SenderID : A

ReceiverID : B

From : A

To : D

SenderID : B

ReceiverID : C

From : A

To : D

SenderID : C

ReceiverID : D

From and To

in Header

SenderID and ReceiverID

in Routing Header

Ack

Message

Ack

Ack

Message

From-Party

[PartyID = A]

Router

 [PartyID = B]

Sender A

Receiver/Sender B

To-Party

[PartyID = D]

Receiver D

Router

 [PartyID = C]

Receiver/Sender C

1

2

3

_1031223737.doc

Repeat the recovery sequence when same error occurs

Suspend

Re-send the last message

Sequence Number = 6

Transient Errors

Sequence Number = 6

Sequence Number = 5

Receiver

Sender

_1031154232.doc

“From” Messaging Service Handler

“To” Messaging Service Handler

“Sender”

“Receiver”

From-Party

Figure � SEQ Figure * ARABIC �1�

To-Party

TRANSPORT

_1031155138.doc

Receiver’s temporary persistent store

Copy one message from persistent storage

Normal Message

with Sequence Number

Message

1

Acknowledgment Message

Return reply status

Send a message with Sequence Number and MessageID

Check�reply

Receive and store the message in persistent storage, pass to “To-Party”

Message

If reply is an Acknowledgment Message, Sender may remove the transmitted message from temporary persistent storage; otherwise, an error handler is invoked

Receiver

Sender

5

2

3

4

_1029870091.doc

Sender

Receiver

Detect timeout

Normal Message�Sequence Number = 5

Normal Message�Sequence Number = 6

Normal Message�Sequence Number = 6

Acknowledgment Message

Acknowledgment Message

