[image: image11.jpg]Creating A Single Global Electronic Market

ebXML Transport, Routing & Packaging
Reliable Messaging Specification

Working Draft 2-October-2000

This version:

ebXML Reliable Messaging Specification v0-080
Latest version:

N/A

Previous version:

v0-078

Editor:

Jim Hughes <jfh@fs.fujitsu.com>

Authors:

Masayoshi Shimamura <shima@rp.open.cs.fujitsu.co.jp>
Contributors:

See Acknowledgements
Abstract

This document defines the structures and processes used to provide Reliable Messaging within the ebXML Transport, Routing and Packaging architecture.

Status of this Document
This document represents work in progress and no reliance should be made on its content.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in IETF RFC 2119.
Editor Note 1: This version:
- incorporates (as appropriate) email comments through 28 September
- incorporates the decisions made during the Dallas F2F
- splits the prior version into a part for incorporation into MS Ver0.21c
- identifies the remaining parts as Phase 2 or Phase 3 work, or for inclusion in a non-normative Implementer’s Guide (to be developed)
Table of Contents

31
Introduction

31.1
Purpose and Scope

32
Sections to Add to MS Ver0.21C

32.1
Definition and Scope [MS section 7]

32.1.1
EbXML Message Structure [MS section 7.1.1]

32.1.2
EbXML Header Container Example [MS section 7.3.4]

32.1.3
Reliable Messaging Flow [MS section 7.5, added]

52.1.4
Reliable Messaging Recovery Procedures [MS section 7.6, added]

72.2
ebXML Header Document [MS section 8]

72.2.1
ReliableMessagingInfo [MS section 8.4.4]

82.2.2
Routing Header Document [MS section 8.5, added]

92.3
Schema and DTD Definitions [MS Appendix A]

92.4
Examples [MS Appendix B]

92.5
Communication Protocol Interface [MS Appendix E]

102.5.1
HTTP

112.5.2
SMTP

122.5.3
FTP

122.5.4
Communication Protocol Errors during Reliable Messaging

133
Modifications to ebXML Glossary

133.1
Reliable Messaging Terms

133.1.1
Once And Only Once

133.1.2
At Most Once

143.1.3
Best Effort

144
Phase 2/Phase 3 Activities

144.1
Reliable Routing

144.1.1
Store and Forward Semantics

154.1.2
Routing Information

154.1.3
Error Handling in Routing

154.2
Transient Errors

165
Non-normative Material

165.1
Basic Concepts

185.2
Detection of Repeated Messages by the Receiver

186
Acknowledgements

187
Author’s Address

Introduction

1.1 Purpose and Scope
This specification defines the Reliable Messaging function used between ebXML Messaging Services. It responds to the requirements for Reliable Messaging found in section 4.2(1) of Reference [1]. Material from this draft document will be incorporated into the Messaging Services Specification at this time, and at a future date after further definitions are completed and there is experience from the Proof of Concept activities.

Where appropriate, MS-Editor notes are provided to show where items might appear in version 0.21C of the Messaging Services specification.

2 Sections to Add to MS Ver0.21C

The material in this section is suitable for inclusion in Phase 1 specifications.

2.1 Definition and Scope [MS section 7]

2.1.1 EbXML Message Structure [MS section 7.1.1]

MS Editor – insert Routing Header box into the ebXML Header Document in Figure 7-1.

2.1.2 EbXML Header Container Example [MS section 7.3.4]

MS Editor – add <Routing Header> … </Routing Header> into example.

2.1.3 Reliable Messaging Flow [MS section 7.5, added]

The Reliable Messaging function defines an interoperable protocol such that any two Messaging Service implementations can “reliably” exchange messages that are sent using “reliable messaging” semantics.

Reliably exchanging messages means that, with respect to Sending and Receiving Message Service implementations:

· For any given message provided to the Sending Messaging Service, the Receiving Messaging Service will deliver at most one copy of the message to the Receiver.

· A positive acknowledgement will be sent from the Receiving Messaging Service to the Sending Messaging Service to indicate receipt and storage in persistent storage, and if this acknowledgement is not received the Sending Messaging Service will notify the original Sending Party

· Both the Sending and Receiving Messaging Services will use persistent storage for recovery

Reliable Messaging is defined only for direct connections between Messaging Service implementations. At a later time, networks consisting of intermediate Messaging Service implementations will be supported.

All ebXML Messaging Service implementations SHALL support the Reliable Messaging function. With respect to a particular Sender and Receiver pair, transmission of one reliable message SHALL be completed before another reliable message may be sent.

The following figure shows the reliable messaging flow:

[image: image1.wmf]

Sender

Receiver

If reply is an Acknowledgment Message, Sender may

remove the transmitted message from persistent

storage; otherwise, an error handler is invoked

Message

Receive and store the

message in persistent

storage

Check

reply

Send

a

 message with Sequence

Number

 and Messag

eID

Acknowledgment Message

Message

Normal Message with

”OnceAndOnlyOnce” Semantics

Place

one

message into

persistent storage

Receiver’s persistent

storage

5

1

2

3

4

 Figure 7‑2: Reliable Message Transfer Sequence
Reliable Messaging processing is shown in the following sequence:

(1)
Message preparation

Sender initially stores messages passed from the ebXML “From-Party” in persistent storage, and then prepares the stored message for message transfer.
(2)
Sending message

A Reliable Message has DeliverySemantics = “OnceAndOnlyOnce”, and receipt of a message with this value notifies the Receiver of Reliable Messaging semantics.
(3)
Receiving, checking and storing message

The Receiver receives the reliable message and, if the message is not a duplicate message, stores the message in persistent storage and processes the message appropriately.

 (4)
Acknowledgment by Receiver
The Receiver returns an Acknowledgment Message to the Sender for every received reliable message, even if it is a duplicate message.

(5)
Sender checks the acknowledgement and removes transferred message
Sender checks the Acknowledgement Message from the Receiver. If the reply is an appropriate Acknowledgement Message for the transferred message, Sender may remove the transferred message from Sender’s persistent storage if the message is no longer needed for some other Messaging Service function or later failure recovery.
The Receiver’s Messaging Service sends an Acknowledgement Message to the Sender’s Messaging Service for every Normal Reliable Messaging message received. There is no reply to the Acknowledgement message from the Sender’s Messaging Service and the Sender’s Messaging Service will not initiate a new message transmission until a current message transmission has been correctly received. In the Acknowledgement Message:

· The MessageType SHALL be “Acknowledgement”.

· There is no Payload and no business level response information.

2.1.4 Reliable Messaging Recovery Procedures [MS section 7.6, added]

2.1.4.1 Messaging Service Parameters
In Reliable Messaging, the Sending Messaging Service uses the following Messaging Service parameters during recovery procedures.

This information may be determined in a number of ways, such as the TPA or some other method.

Table 2‑1 Messaging Service Parameters used in Recovery
	Argument
	Outline Description

	Timeout
	Wait time for any response from the Receiver.

· Integer value specifying a number of seconds
· After sending a Normal Message, the Sender SHALL wait for any response (MS Acknowledgement or Error Message) for the specified time before start of retry

	Retries
	Maximum number of retries.

· Integer value specifying the number of retries
· The Sender SHALL repeat retries the specified number of times until the Sender receives an MS Acknowledgement Message
· If the Sender does not receive an MS Acknowledgement Message after the maximum number of retries, the Sender SHALL notify the incident to the higher level (application and/or system admin)

	RetryInterval
	Wait time between retries, if an Acknowledgement Message is not received

· Integer value specifying a number of seconds
· After a retry, the Sender SHALL wait for a response (MS Acknowledgement or Error Message) for specified time before start of the next retry

2.1.4.2 Recovery Sequence for Lost Messages

When the Sender detects a timeout while waiting for an Acknowledgement Message from the last sent message, the appropriate recovery handler in the Sender executes a Messaging Service recovery sequence. The timeout value is defined as Timeout. This recovery sequence SHALL re-send the final message to the Receiver and SHALL use a retry interval the retry number of times. The content of the re-sent message is exactly the same as the original message. In the recovery sequence or after the recovery sequence,

· If the Sender does not receive any error message or Acknowledgment Message in the retry interval, the recovery handler repeats the recovery sequence the retry number of times.

· If the Sender detects or receives another Error Message, the recovery handler executes the appropriate recovery sequence for the error.

· If the Sender receives an Acknowledgment Message in the recovery sequence, the message transmission is completed.

[image: image2.wmf]

Sender

Re

-

send the last

message

Detect timeout

Sequence Number = 5

Retry Interval

Receiver

Repeat the recovery

sequence when

same error occurs

Sequence Number = 6

Sequence Number = 6

Figure 2‑5: Recovery Sequence for Timeout

2.1.4.3 Maximum Number of Retries and Retry Interval

The retry interval is defined as RetryInterval. When the total number of retries in a reliable message transmission reaches a maximum number, defined as Retries, and the last error is still not resolved, the recovery handler will:

(1) Suspend sending messages to the Receiver

(2) Report this incident to a higher-level so that a system administrator can resolve this incident

When the system administrator resolves the incident, the recovery handler will reset the retry counter to zero and then re-start message transfer sequence from the uncompleted reliable message transmission.

[image: image3.wmf]

Send

er

Receiver

Sequence Number = 6

Sequence Number = 6

Retry Interval

Sequence Number = 6

Detect timeout

First retry

(for Communication

Protocol Errors)

Second retry

(for Communication

Protocol Errors)

Third retry

(for Timeout)

No reply in Retry Interval

Suspend and Report this incident

System administr

ator resolves this incident

Sequence Number = 6

Reset retry counter to 0,

and then

restart

message transfer from

the uncompleted

message transmission

Retry Interval

Sequence Number = 6

Sequence Number = 7

Sequence Number = 5

Detect transport protocol level error that is

unrecoverable at the transport protocol level

De

tect transport protocol level error that is

unrecoverable at the transport protocol level

Figure 2‑7: Repeat of Recovery Sequence (specified maximum number of retries is 3)

2.2 ebXML Header Document [MS section 8]

2.2.1 ReliableMessagingInfo [MS section 8.4.4]

The last element of the ebXMLHeader is the ReliableMessagingInfo element. This element identifies the degree of reliability with which the message will be delivered. This element has a single attribute, DeliverySemantics. This attribute is an enumeration, which may have one of the following values:

· "OnceAndOnlyOnce" – reliable messaging semantics: the receiving Service Interface handler will receive a given message no more than once, the sending Messaging Service will execute retry procedures in the event of failure and the sending Service Interface handler will be notified in the event of failure.

· "BestEffort" – reliable delivery semantics are not specified: no Acknowledgement Message is returned to the Sender, duplicate messages might be delivered and persistent storages are not required.

<ReliableMessagingInfo>

<DeliverySemantics>OnceAndOnlyOnce</DeliverySemantics>

</ReliableMessagingInfo>

2.2.2 Routing Header Document [MS section 8.5, added]

One RoutingHeader element immediately follows the Header element. It is required in all ebXMLHeader documents. The RoutingHeader element is a composite element comprised of at least the following 4 required subordinate elements:

· SenderURI – the Sender’s Messaging Service Handler URI.

· ReceiverURI – the Receiver’s Messaging Service Handler URI.

· ErrorURI – URI designated by the Sender for reporting errors.
· Timestamp – timestamp of the RoutingHeader creation, in the same format used for Timestamp in the XML Header MessageData element.
When the RoutingHeader is used for a message sent with Reliable Messaging functions (DeliverySemantics is set to “OnceAndOnlyOnce” in the XML Header ReliableMessagingInfo element), the Sender SHALL add one additional RoutingHeader element to the RoutingHeader:

· SequenceNumber – Integer value that is incremented (e.g. 1, 2, 3, 4...) for each Sender-prepared message sent to the Receiver. The Sequence Number consists of ASCII numerals in the range 1-999,999,999. In following cases, the Sequence Number takes the value “1”:

a) First message from the Sender to a particular Receiver

b) First message after wraparound (next value after 999,999,999)

c) First message after removing Sequence Number information in the Sender (Sender MAY remove Sequence Number information when it has no messages which were sent to the Receiver for long time).

Editor Note 2: “a long time” needs more precision. Should there be a way for the Sender to notify the Receiver that the Sequence Number count has been reset?

The following fragment demonstrates the structure of the RoutingHeader element of the ebXMLHeader document when Reliable Messaging is used:

<RoutingHeader>

<SenderURI>...</SenderURI>

<ReceiverURI>...</ReceiverURI>

<ErrorURI>...</ErrorURI>

<Timestamp>...</Timestamp>

<SequenceNumber>...</SequenceNumber>

</RoutingHeader>

The Header structures in an Acknowledgement Message SHALL have at least the following element values, which are obtained from the message being acknowledged:

· From = ReceiverURI as shown in the Routing Header Document

· To = SenderURI as shown in the Routing Header Document

· TPAId and ConversationID as shown in the Header Document

· ServiceInterface and Action are empty

· RefToMessageId = MessageId of the reliable message

· DeliverySemantics = “BestEffort”

2.3 Schema and DTD Definitions [MS Appendix A]

MS Editor – need to add appropriately…

DTD:

 <!ELEMENT RoutingHeader (SenderURI , ReceiverURI , ErrorURI, Timestamp,

 SequenceNumber)>

 <!ELEMENT SenderURI (#PCDATA)>

 <!ATTLIST SenderURI e-dtype NMTOKEN #FIXED 'uri' >

 <!ELEMENT ReceiverURI (#PCDATA)>

 <!ATTLIST ReceiverURI e-dtype NMTOKEN #FIXED 'uri' >

 <!ELEMENT ErrorURI (#PCDATA)>

 <!ATTLIST ErrorURI e-dtype NMTOKEN #FIXED 'uri' >

 <!ELEMENT TimeStamp (#PCDATA)>

 <!ATTLIST TimeStamp e-dtype NMTOKEN #FIXED 'dateTime' >

 <!ELEMENT SequenceNumber (#PCDATA)>
2.4 Examples [MS Appendix B]

MS Editor – need to add appropriately…

Sample:

 <RoutingHeader>

 <SenderURI>

 http://www.sender_company.com/ebxmlhandler/

 <SenderURI>

 <ReceiverURI>

 http://www.receiver_company.com/ebxmlhandler/

 </ReceiverURI>

 <ErrorURI>

 http://www.sender_company.com/ebxmlerrorhandler/

 </ErrorURI>

 <Timestamp>

 19991110T102344.000Z

 </Timestamp>

 <SequenceNumber>

 000000023

 </SequenceNumber>

 </RoutingHeader>

2.5 Communication Protocol Interface [MS Appendix E]

The ebXML Messaging Service messages are carried by Transport Protocols as shown in the following sections.

2.5.1 HTTP
All ebXML Messaging Service messages are carried by an HTTP Request Message (POST method). The HTTP Response Message to an HTTP Request Message has no entity body.

The following Figure x.x shows how a Normal Message and its corresponding Acknowledgement Message (when Reliable Messaging is used) are carried using HTTP:

Figure x.x HTTP Flow

[image: image4.wmf]

Receiver

MSH

HTTP Handler

S

ender

MSH

HTTP Handler

Sending

Party

Receiving

Party

Business Process Request

Request Message (POST)

Normal Message

Acknowledgement Message

Response Message

Request Message (POST)

Response Message

Table x-x Relationship with HTTP

	ebXML Messaging Service message
	HTTP

	Normal Message
	· Request Message (POST method) from Sender to Receiver

· Response Message to the Request Message has no entity body

	Acknowledgement Message
	· Request Message (POST method) from Receiver to Sender

· Response Message to the Request Message has no entity body

	Error Message
	· Request Message (POST method) from Receiver to Sender

· Response Message to the Request Message has no entity body

2.5.2 SMTP
All ebXML Messaging Service messages are carried as mail in an SMTP Mail Transaction as shown in the following Figures.
Figure x.x SMTP Flow

[image: image5.wmf]

Sender

Receiver

MSH

MSH

Sending

Party

Receiving

Party

SMTP Handler

SMTP Handler

Business Process Request

Mail Transaction

Normal Message

Mail Transaction

Acknowledgement Message

The Mail Transaction follows RFC 821, “SIMPLE MAIL TRANSFER PROTOCOL”, as shown in the following Figure:

Figure x.x SMTP Sequence

[image: image6.wmf]

sender

-

SM

TP

receiver

-

SMTP

MAIL FROM : <xxxx@company1.org>

250 OK

RCPT TO : <yyyy@company2.org>

250 OK

DATA

354 Start mail input ;

end with <CR/LF> . <CR/LF>

one line of message

one line of message

...

CR/LF CR/LF

250 OK

Table 2‑2 Relationship with SMTP

	ebXML Messaging Service message
	SMTP

	Normal Message
	Mail Transaction from Sender to Receiver

	Acknowledgement Message
	Mail Transaction from Receiver to Sender

	Error Message
	Mail Transaction from Receiver to Sender

2.5.3 FTP

[TBD]

2.5.4 Communication Protocol Errors during Reliable Messaging
When the Sender or the Receiver detects a transport protocol level error (such as an HTTP, SMTP or FTP error), the appropriate transport recovery handler will execute a recovery sequence. No Reliable Messaging functions are involved in this recovery sequence, since it happens at a lower level.
However, if the Sender detects a transport protocol level error that is unrecoverable at the transport protocol level, the appropriate recovery handler in the Sender will execute a Messaging Service recovery sequence. This recovery sequence SHALL use a retry interval and SHALL re-send the last message to the Receiver. The format of the re-sent message is exactly the same as the original message. In the recovery sequence or after the recovery sequence:

· If the Sender detects a transport protocol level error again, which is unrecoverable at the transport protocol level, the recovery handler repeats the recovery sequence for an implementation-defined number of times.

· If the Sender detects or receives another error, the recovery handler executes an appropriate recovery sequence for the error.

· If the Sender receives an Acknowledgment Message, the message transmission is completed.

[image: image7.wmf]Sender

Receiver

Sequence Number

 = 5

Sequence Number

 = 6

Repeat

the recovery

sequence when

same error occurs

Retry In

t

erval

Sequence Number

 =

6

Re-send

the

last

message

Detect transport protocol level error

that

 is

unrecoverable

at the

 transport

protocol

 level

Figure x.x: Recovery Sequence for Communication Protocol Errors
3 Modifications to ebXML Glossary

The following items should be placed in the approved ebXML Glossary.

3.1 Reliable Messaging Terms
3.1.1 Once And Only Once

A message delivery semantic that means:

· Message delivery is guaranteed under most circumstances, and the Sending Party will be notified if there is no delivery.

· A message will always reach the Receiving Party no more than once.

· If a message does not reach the Receiving Party, the Sending Party does not need to execute retry procedures (retry is automatically executed by the messaging service).

3.1.2 At Most Once

A message delivery semantic that means:

· Message delivery is not guaranteed

· A message will always reach the Receiving Party no more than once.

· If a message is not delivered, the Sending Party can detect the incident, and if the Sending Party wants to guarantee message delivery, the Sending Party must execute retry procedures

3.1.3 Best Effort

A message delivery semantic that means:

· Message delivery is not guaranteed

· A message will always reach the Receiving Party no more than once.

· If a message does not reach the Receiving Party, the Sending Party can not detect the incident

4 Phase 2/Phase 3 Activities

Material in this section will be discussed in future TRP meetings as a likely base for further additions to the Messaging Service specification.

4.1 Reliable Routing

4.1.1 Store and Forward Semantics

Reliable Routing consists of a series of individual simple Reliable Messaging transmissions between a Sender and a Receiver. These Store and Forward semantics consist of the following sequence:

(1) Sender A transfers a message to Receiver B using Reliable Messaging.
(2) After completion of the reliable messaging transmission between Sender A and Receiver B, Sender B transfers the received message to Receiver C using Reliable Messaging.
(3) After completion of the reliable messaging transmission between Sender B and Receiver C, Sender C transfers the received message to Receiver D using Reliable Messaging.
(4) [Repeat until end of routing]

Figure 4‑1 Reliable Routing

[image: image8.wmf]

From

-

Party

[PartyID = A]

From

-

Party

[PartyID = B]

From

-

Party

[PartyID = C]

From

-

Party

[PartyID = D]

SenderURI = 1

ReceiverURI = 2

SenderURI = 7

ReceiverURI = 8

SenderURI = 5

ReceiverURI = 6

SenderURI = 3

R

eceiverURI = 4

message

ACK

ACK

ACK

message

message

message

SEND

SEND

SEND

From:

A

To:

B

Sender:

1

Receiver:

4

From:

A

To:

B

Sender:

3

Receiver:

6

From:

A

To:

B

Header

Sender:

1

Receiver:

4

Sender:

5

Receiver:

8

Sender:

3

Receiver:

6

Sender:

1

Receiver:

4

Routing

Header

4.1.2 Routing Information

The first Sender (From-Party’s Sender) specifies the From/To elements in the Header, and the SenderURI/ReceiverURI elements in the Routing Header for first message transferred to the Router.

When the message is forwarded between Routers, the Router adds a new RoutingHeader to the message with new SenderURI/ReceiverURI elements for message forwarding to the next Router.
4.1.3 Error Handling in Routing

When message forwarding to a subsequent Router is not available or fails from a particular Router, and if that Router received the message from previous Sender, the Router’s Receiver returns an ErrorMessage (Transient Error) to the Sender instead of an Acknowledgement Message. By this rule, the Sending Party will not receive a Messaging Service acknowledgement of successful transmission until the Receiving Party’s Message Service Handler has actually received and stored the message.

4.2 Transient Errors
When the Sender receives the error message “Transient Error”, the appropriate recovery handler in the Sender executes a Messaging Service recovery sequence. The recovery sequence SHALL suspend sending of further messages to the Receiver for the period specified in the MinRetrySecs field in the error message. If the MinRetrySecs field does not exist in the error message, RetryInterval specified in TPA or elsewhere is used as the suspending time.
After the suspension, the Sender’s recovery handler SHALL re-send the last sent message to the Receiver. The format of the re-sent message is exactly the same as the original message. In the recovery sequence or after the recovery sequence,

· If the Sender receives the error message “Transient Errors” again, the recovery handler repeats the recovery sequence.

· If the Sender detects or receives another error, the recovery handler executes the appropriate recovery sequence for the error.

· If the Sender receives an Acknowledgment Message, the message transmission is completed.

[image: image9.wmf]

Sender

Receiver

Sequence Number = 5

Sequence Number = 6

Transient Errors

Sequence Number = 6

Re

-

send the last

message

Suspend

Repeat the recovery

sequence when

same error occurs

Figure 4‑6: Recovery Sequence for Transient Errors
5 Non-normative Material

The majority of the material in this section should remain in a non-normative Implementer’s Guide.

However, since the three recovery parameters (Timeout, Retries and RetryInterval) used by the Sender for Reliable Messaging Recovery have not yet been formally defined in Phase 1, the portions of this section 5 relating to recovery remain in this non-normative portion of the specification. In the next phase of specification development, these parameters will be defined formally and it is expected that the recovery process will be moved into the normative portion of the Messaging Services specification.

5.1 Basic Concepts

To achieve reliable messaging between Parties, this specification defines a process that enables the Parties’ ebXML Messaging Services to communicate with each other using “Once and Only Once” semantics, coupled with a timeout to determine lost messages.

For the purposes of this document, the term “Sender” means the Sending Party’s Messaging Service that sends the message on the underlying message transport, and “Receiver” means the Messaging Service used by the Receiving Party. The term “From-Party” means the party that originally prepared the message and provided the message to its Messaging Service, and the term “To-Party” means the party that was identified by the From-Party as the final recipient of the message.

For example, a simple message transmission using two Message Service Handlers and one transport is shown in Figure 2-1.

[image: image10.wmf]

“From” Messaging

Service Handler

“Sender”

“Receiver”

From

-

Party

Figure

1

To

-

Party

“To” Messaging

Service Handler

TRANSPORT

Figure 2-1: Simple Message Transmission

Reliable Messaging consists of the following basic concepts:

2) Messages are sent and received through Messaging Service Handlers (MSH), which function on behalf of their respective Parties (and Business Processes). With respect to a particular underlying transport, each MSH can be identified as a “Sender” or a “Receiver”.

3) A message is identified by its MessageId field, which is contained in the Message Header’s MessageData element created by the Sender.

4) When the From-Party requests Reliable Messaging semantics for the message, the Sender sets the DeliverySemantics field in the ReliableMessagingInfo element of the Message Header to “OnceAndOnlyOnce”.

5) Reliable Messaging processing requires no changes to the Message Header during transmission, once the Message Header is prepared.

6) Reliable Messaging uses a “Routing Header” contained in the Message Envelope.

7) A Reliable message indicated by setting the DeliverySemantics field to OnceAndOnlyOnce.

8) For each reliable message, the Sender generates a Sequence Number that
thatt is unique to the MSH Sender-Receiver pair. For subsequent reliable messages, the Sender increments the Sequence Number placed in that message. The Sequence Number is contained in the Routing Header Data Element.

9) A Messaging Service level Acknowledgement is sent from the Receiver to the Sender for every received message with a message type of Normal after persisting the message.

10) Within a reliable message transmission, the Receiver must determine whether a received message is a duplicate message. Two possible approaches are through using the MessageId and/or the Sender-Receiver unique Sequence Number. If the received message is a duplicate, the Receiver discards the message after sending the acknowledgement. If the message is not a duplicate, the Receiver stores the message in its persistent storage, sends an acknowledgement and delivers the message to a higher processing level.
11) Because every message received with Reliable Messaging semantics will cause the sending of a related Acknowledgement Message, the Sender must be prepared to discard duplicate Acknowledgement Messages if multiple copies of the original message are sent.

12) To detect loss of a reliable message, the Sender sets a timeout, retry interval and number of retries for that message. If the transmitted reliable message is lost due to system or communication failure, the Sender will re-send this message using these parameters before reporting failure to the From-Party. These values might be specified in the Trading Partner Agreement (TPA) or some other fashion.
5.2 Detection of Repeated Messages by the Receiver
Detection of repeated messages in the Receiver using Message Identifiers and/or Sequence Numbers is implementation dependent.
Comparison of Message Identifiers could be used to detect duplicated messages. Another effective detection logic can be suggested which uses Sequence Numbers, which are unique to a particular Sender-Receiver pair.
The Receiver receives the reliable message and then compares the received reliable message’s Sequence Number with the immediately previous reliable message’s Sequence Number:

(1)
Received message’s Sequence Number == Previous message’s Sequence Number + 1

The message is not a repeated message. The Receiver stores the message into persistent storage, processes the message appropriately and returns an Acknowledgement Message.

(2)
Received message’s Sequence Number == Previous message’s Sequence Number
The message is a repeated message. The Receiver discards the message and returns Acknowledgement Message.
 When both the received message’s Sequence Number and the previous message’s Sequence Number are 1, the Receiver will have to use the MessageId instead of a Sequence Number to check for a repeated message. This situation happens only when following sequence occurs (this is a very unusual situation):

a) The Sender sends only one message to the Receiver, and it’s the first message for the Sender-Receiver pair. There is no subsequent message for long time.

b) Since there is no other message that should be sent to the Receiver for long time, the Sender might remove its Sequence Number information for the Receiver. However, the Receiver does not remove its Sequence Number information for the Sender.

After that, the Sender is given a message from the sending Party that should be sent to the Receiver. Since the Sender’s Sequence Number information was previously removed, the Sender sends the message to the Receiver using Sequence Number 1.
(3)
Received message’s Sequence Number == 1 && not case (2)

The message is not a repeated message. The Receiver stores the message into persistent storage, processes the message appropriately and returns an Acknowledgement Message.

(4)
Any other case
It means that the Sequence Number value is invalid. The Receiver discards the message and returns an error message.
6 Acknowledgements

The author wishes to acknowledge the members of the ebXML TR&P who commented on Fujitsu’s proposal in the face-to-face meetings and in e-mail.
7 Author’s Address

Masayoshi Shimamura
Fujitsu Limited
Shinyokohama Nikko Bldg., 15-16, Shinyokohama 2-chome
Kohoku-ku, Yokohama 222-0033, Japan
Telephone: +81-45-476-4590
E-mail: shima@rp.open.cs.fujitsu.co.jp

�PAGE \# "'Page: '#'�'" �� consider abstracting “Recovery Counter” – implementation detail?

ebXML Reliable Messaging Specification v0-080 (2 October 2000)
16

[image: image11.jpg][image: image12.png]\QXML

_1031989771.doc

Sequence Number = 5

Sequence Number = 7

Sequence Number = 6

Retry Interval

Reset retry counter to 0, and then restart message transfer from the uncompleted message transmission

Sequence Number = 6

System administrator resolves this incident

Suspend and Report this incident

No reply in Retry Interval

Third retry�(for Timeout)

Second retry�(for Communication Protocol Errors)

First retry�(for Communication Protocol Errors)

Detect timeout

Sequence Number = 6

Detect transport protocol level error that is unrecoverable at the transport protocol level

Retry Interval

Sequence Number = 6

Detect transport protocol level error that is unrecoverable at the transport protocol level

Sequence Number = 6

Receiver

Sender

_1031992362.doc

Receiver’s persistent storage

Place one message into persistent storage

Normal Message with�”OnceAndOnlyOnce” Semantics

Message

1

Acknowledgment Message

Send a message with Sequence Number and MessageID

Check�reply

Receive and store the message in persistent storage

Message

If reply is an Acknowledgment Message, Sender may remove the transmitted message from persistent storage; otherwise, an error handler is invoked

Receiver

Sender

5

2

3

4

_1031992495.doc

Repeat the recovery sequence when same error occurs

Suspend

Re-send the last message

Sequence Number = 6

Transient Errors

Sequence Number = 6

Sequence Number = 5

Receiver

Sender

_1031992139.doc

250 OK

CR/LF CR/LF

...

one line of message

one line of message

354 Start mail input ;�end with <CR/LF> . <CR/LF>

DATA

250 OK

RCPT TO : <yyyy@company2.org>

250 OK

MAIL FROM : <xxxx@company1.org>

receiver-SMTP

sender-SMTP

_1031746126.doc

Response Message

Request Message (POST)

Response Message

Acknowledgement Message

Normal Message

Request Message (POST)

Business Process Request

HTTP Handler

HTTP Handler

Receiving Party

Sending Party

MSH

MSH

Receiver

Sender

_1031746263.doc

Acknowledgement Message

Mail Transaction

Normal Message

Mail Transaction

Business Process Request

SMTP Handler

SMTP Handler

Receiving Party

Sending Party

MSH

MSH

Receiver

Sender

_1031756062.doc

From-Party�[PartyID = A]

From-Party�[PartyID = B]

From-Party�[PartyID = C]

From-Party�[PartyID = D]

SenderURI = 1�ReceiverURI = 2

SenderURI = 7�ReceiverURI = 8

SenderURI = 5�ReceiverURI = 6

SenderURI = 3�ReceiverURI = 4

message

ACK

ACK

ACK

message

message

message

SEND

SEND

SEND

From:	A�To: 	B

Sender:	1�Receiver:	4

Sender:	3�Receiver:	6

From:	A�To: 	B

Sender:	1�Receiver:	4

From:	A�To: 	B

Header

H

Sender:	5�Receiver:	8

Sender:	1�Receiver:	4

Sender:	3�Receiver:	6

H

Routing�Header

_1031223944.doc

Sequence Number = 6

Sequence Number = 6

Repeat the recovery sequence when same error occurs

Receiver

Retry Interval

Sequence Number = 5

Detect timeout

Re-send the last message

Sender

_1031714942.doc

Re-send the last message

Sequence Number = 6

Retry Interval

Repeat the recovery sequence when same error occurs

Detect transport protocol level error that is unrecoverable at the transport protocol level

Sequence Number = 6

Sequence Number = 5

Receiver

Sender

_1031154232.doc

“From” Messaging Service Handler

“To” Messaging Service Handler

“Sender”

“Receiver”

From-Party

Figure � SEQ Figure * ARABIC �1�

To-Party

TRANSPORT

