
11/2/2000 Diagram 1

Multi-Hop Reliable Messaging Use Cases
Discussion paper for Tokyo F2F

David Burdett
Commerce One

November 2, 2000

11/2/2000 Diagram 2

Use Cases – Explicit Acknowledgements

11/2/2000 Diagram 3

Party One
System

Party Two
System

1. Message

2. Acknowledgement

Use Case 1 - Acknowledgement by Destination

• A sender of a message may need to know that it has
reached its final destination
– requires final destination to acknowledge receipt

• Note that the various internet servers, firewalls,
DMZ's etc through which the message goes have not
been shown as none of these would actually "look" at
the ebXML header or process it in anyway.

11/2/2000 Diagram 4Use Case 2 - Intermediate Acknowledgement

• A sender of a message may want to know that the message has
reached an intermediate point - for example if one leg of trip
uses a slow protocol such as SMTP

• Requires intermediate destination (hub) to:
– acknowledge initial receipt, and
– forward receipt from final destination

• Note Forwarded messages (e.g. Message 3) contain the same
message header as the message that caused it to be sent (e.g
Message 1). Only the routing header changes (or a new one
added).

HubParty One
System

Party Two
System

1. Message

2. Acknowledgement
(intermediate)

4. Acknowledgement
(final)

3. Message
(forwarded)

5. Acknowledgement (final)
(forwarded)

11/2/2000 Diagram 5Use Case 3 - Reporting failed message delivery

• A sender of a message may need to know if a
message could not be delivered to its final destination

• Require intermediate destination (e.g. a hub) to:
– notify the original sender of a message of its failure to

forward it to its final destination

HubParty One
System

Party Two
System

1. Message

2. Acknowledgement
(intermediate)

3. Message
(forwarded)

4. Delivery Failure

?
Msg. Lost

Timeout !!

11/2/2000 Diagram 6 Use Case 4 - Retry after failed delivery

• A sender of a message should try several times
before reporting failure
– a second or later try might work

• Must work for inbound and outbound messages
• Requires recipient to ignore duplicates

Hub Party Two
System

3. Message (forwarded)

4. Acknowledgement
(final)?

Msg. LostTimeout !!

5. Message (forward)
(resend)

1. Message

?
Msg. LostTimeout !!

7. Message (forward)
(resend)

Ignore
Duplicate

Ignore
Duplicate

OK !!

2. Acknowledgement
(intermediary)

Party One
System

6. Acknowledgement
(final)

8. Acknowledgement
(final)

9. Acknowledgement (final)
(forwarded)

11/2/2000 Diagram 7Use Case 5 - Support for multiple protocols

• The Final acknowledgement from Party Two should
be sent back to Party One

• Earlier requirements (2, 3 and 4) must work equally
well:
– Over multiple hops
– If different protocols/standards are used along the way

Hub 1 Hub 2Party One
System

Party Two
System

1. Message

2. Acknowledgement
(Intermediate)

3. Message
(forwarded)

5. Message

(forwarded)

4. Acknowledgement
(Intermediate)

6. Acknowledgement
(Final)

7. Acknowledgement (final)
(forwarded)

8. Acknowledgement (final)
(forwarded)

11/2/2000 Diagram 8 Use Case 6 – Optional intermediate acks

• Intermediate acknowledgements (messages 2 & 4 in
diagram) are not needed if final acknowledgement
can be returned within the time required

Hub 1 Hub 2Party One
System

Party Two
System

1. Message

2. Acknowledgement
(Intermediate)

4. Acknowledgement
(Intermediate)

6. Acknowledgement
(Final)

7. Acknowledgement (final)
(forwarded)

8. Acknowledgement (final)
(forwarded)

3. Message
(forwarded)

5. Message

(forwarded)

11/2/2000 Diagram 9 Use Case 7 – Optional Final Ack

• There may be no need to send back the Final
Acknowledgement to party one if:
– Party one has received an intermediate ack, and
– Party one knows that he will be informed of delivery failures

Hub 1 Hub 2Party One
System

Party Two
System

1. Message

4. Acknowledgement
(Final)

5. Acknowledgement (final)
(forwarded)

6. Acknowledgement (final)
(forwarded)

2. Message
(forwarded)

3. Message

(forwarded)

11/2/2000 Diagram 10 Failure Analysis - 1

• Fail Case 1: If message 1 is not delivered:
– re-send message 1 until message 2 is received, or
– eventually give up

• Fail Case 2: If message 2 is not received:
– same as Fail Case 1

Hub 1Party One
System

1. Message

2. Acknowledgement
(intermediate)

FC 1

FC 2

11/2/2000 Diagram 11 Failure Analysis - 2

• Fail Case 3: If message 3 is not delivered or
message 4 not received:
– re-send message 3 until message 4 is received, or
– eventually give up and send message 10 Delivery Failure

• Fail Case 4: If message 10 not delivered, or message
11 not received
– re-send message 10 until message 11 received, or
– eventually give up and notify TP1 by other means if required

Hub 1 Hub 2Party One
System

3. Message
(forwarded)

4. Acknowledgement
(Final)

10. Delivery
Failure

11.Acknowledgement
(Final)

FC 3

FC 3
FC 4

FC 4

1. Message

2. Acknowledgement
(Intermediate)

11/2/2000 Diagram 12 Failure Analysis - 3

• Fail Case 5: Message 5 not delivered or message 6 not
received:
– re-send message 5 until message 6 received, or
– eventually give up and send message 12

• Note The Delivery Failure needs to be acknowledged since
Party One wants to know of the failure

• Note The Delivery Failure indicates that the message probably
didn’t get through. There is still a possibility that message was
delivered and just the ack failed.

Hub 1 Hub 2
Party One

System
Party Two

System

12. Delivery Failure

13. Acknowledgement
(Intermediate)

FC 5

FC 5

1. Message

2. Acknowledgement
(Intermediate)

3. Message (forwarded)

4. Acknowledgement
(Intermediate)

6. Acknowledgement
(Final)

15. Acknowledgement
(Final)

14. Delivery Failure (forwarded)

5. Message (forwarded)

11/2/2000 Diagram 13 Failure Analysis 4

• Fail Case 6: Message 12 (delivery failure) not
delivered or message 13 not received:
– re-send message 12 until message 13 received, or
– eventually give up and rectify by other means, e.g. Hub 2

operator contacts hub 1 by email, telephone, etc.

Hub 1 Hub 2
Party One

System
Party Two

System

12. Delivery Failure

13. Acknowledgement
(Intermediate)

FC 5

FC 5

1. Message

2. Acknowledgement
(Intermediate)

3. Message (forwarded)

4. Acknowledgement
(Intermediate)

6. Acknowledgement
(Final)

FC 6

FC 6

5. Message (forwarded)

11/2/2000 Diagram 14

• Fail Case 7. Forwarded Delivery Failure (or its
acknowledgement) is not delivered.
– Resend message 14 until message 15 arrives, or
– Eventually give up and rectify by other means

• Note Hub 1 could in this case report to Hub 2 the
delivery failure of the delivery failure message (no 14)
but this is probably going too far ...

Hub 1 Hub 2
Party One

System
Party Two

System

12. Delivery Failure

13. Acknowledgement
(Intermediate)

FC 5

FC 5

1. Message

2. Acknowledgement
(Intermediate)

3. Message (forwarded)

4. Acknowledgement
(Intermediate)

6. Acknowledgement
(Final)

15. Acknowledgement
(Final)

14. Delivery Failure (forwarded)

5. Message (forwarded)

FC 7

FC 7

11/2/2000 Diagram 15

Use Cases – Implicit Acknowledgements

11/2/2000 Diagram 16 Use Case 8 – Implicit Acknowledgements

• The Message (back) acts as an implied
acknowledgement for the Message (out).

• Party One knows, once the Message (back) has
been received that Party Two received the Message
(out)

Party One
System

Party Two
System

1. Message (out)

2. Message (back)

11/2/2000 Diagram 17 Use Case 9 – Intermediate Acks

• An intermediate Ack may still be required if, for example, one
leg of trip uses a slow protocol such as SMTP

• Message 5 also needs an ack (message 6) if it is to be delivered
reliably

• Note Message 4 acts as an ack for Message 3. See later use
case for what happens if Message 3 (or 4) fails to be delivered

• Note Forwarded messages (e.g. Message 3) contain the same
message header as the message that caused it to be sent (e.g
Message 1)

HubParty One
System

Party Two
System

1. Message (out)

2. Acknowledgement
(intermediate)

4. Message (back)

3. Message (out)
(forwarded)

5. Message (back)
(forwarded)

6. Acknowledgement
(final)

11/2/2000 Diagram 18 Use Case 10 – Acks on any hop

• Implicit and explicit acks may be combined on a
separate hops in a multi-hop routing, as only one
message can be the “ack” for an earlier message

• Implicit and explicit acks must not be mixed on a
single conversation over one hop

HubParty One
System

Party Two
System

1. Message (out)

3. Acknowledgement
(intermediate)

6. Message (back)
(forwarded)

2. Message (out)
(forwarded)

4. Message (back)

5. Acknowledgement
(intermediate)

11/2/2000 Diagram 19 Use Case 11 – Different return route

• A message may be returned by a different route to
the route that was used to send the original message

Hub 1Party One
System

Party Two
System

1. Message (out)

3. Acknowledgement
(intermediate)

6. Message (back)
(forwarded)

2. Message (out)
(forwarded)

4. Message (back)

5. Acknowledgement
(intermediate)

Hub 2

11/2/2000 Diagram 20 Use Case 12 – recovery and implicit acks

• Message 8 is an implicit Ack of Message 7
• Message 9 also needs an Ack if it must be delivered

reliably (message 10)
• (no new requirements)

Hub Party Two
System

3. Message (out)
(forwarded)

4. Message (back)?
Msg. LostTimeout !!

5. Message (out)
(forwarded) (resend)

1. Message (out)

?
Msg. LostTimeout !!

7. Message (out)
(forwarded) (resend)

Ignore
Duplicate

Ignore
Duplicate

OK !!

2. Acknowledgement
(intermediate)

Party One
System

6. Message (back)

8. Message (back)9. Message (back) (forwarded)

10. Acknowledgement
(final)

11/2/2000 Diagram 21Use Case 13 – Tying Implicit and Explicit acks together

• Intermediate MSHs needs to know that Message 4
from Party Two is implicit ack to Message 1 from
Party One. Requires Message 4 to contain “Ref to” to
Message 2

• If an intermediate MSH receives a duplicate it should
send back the last message it sent

HubParty One
System

Party Two
System

1. Message (out)

3. Acknowledgement
(intermediate)

6. Message (back)

2. Message (out) (forwarded)

4. Message (back)

5. Acknowledgement
(intermediate)

?
Msg. Lost

Timeout !!

7. Message (out)
(resend)

8. Message (back)
(forwarded)

OK !!

Ignore
Duplicate

11/2/2000 Diagram 22Use Case 14 – Resend before response is ready

• Wait message tells party one to stop resending and wait for
message to arrive

• Same approach applies if Party Two had received a duplicate
message before a response could be sent

• (this is the reason for the “transient error” in the original Error
Handling Spec – David Burdett)

• Note Message 5 acts as an implicit intermediate ack for
message 1 (and 4). The implicit final ack that Message 1 has
reached its final destination is provided by Message 8

HubParty One
System

Party Two
System

1. Message (out)

3. Acknowledgement
(intermediate)

2. Message (out) (forwarded)

6. Message (back)

7. Acknowledgement
(intermediate)

Timeout !!
4. Message (out)

(resend)

8. Message (back)
(forwarded)

OK !!

5. Wait Message

11/2/2000 Diagram 23 Use Case 15 – extended delays in resends

• How long should Party Two retain a message so that
it can check for duplicates – 2 hours?, 2 days?, 2
weeks?, 2 months? 2 years????

• Need a concept of a lifetime for a message for
duplicate filtering purposes

• Is this set in the message?, in the CPA?, in the
CPP?, or any/all of these

Party Two
System

Party One
System

1. Message (out)

6. Message (back)?
Msg. Lost

7. Message (out)
(resend)

Ignore
Duplicate

??

6 Months
later

11/2/2000 Diagram 24

Summary Requirements

11/2/2000 Diagram 25 Summary Requirements - 1

• Reliable Messaging must work equally well over multiple and
single hops (UC 5)

• Each hop may use a different standard/protocol (UC 5)
• The final MSH MAY acknowledge receipt of a message (UC 1)
• An intermediate MSH MAY, if required, acknowledge receipt of

a message that it will forward to the MSH that sent it the
message (UC 2)

• An intermediate MSH MAY omit an intermediate ack if the final
acknowledgement can be returned in time (UC 6)

• An intermediate MSK MAY omit the return of a Final Ack if
Delivery Failures are reported

• An intermediate MSH MAY, if required, report the failure to
successfully forward a message to the MSH that sent it the
message (UC 3)

• An intermediate destination MAY, if required, need to re-send a
message it is forwarding before giving up (FA 1)

11/2/2000 Diagram 26 Summary Requirements - 2

• The “final” acknowledgement message received from
the final MSH MAY, if required need to be sent – via
any intermediate MSHs back to the MSH that sent
the original message (UCs 1 & 5)

• A MSH that receives a delivery failure message MAY,
if required, need to be sent, via any intermediate
MSHs back to the MSH that sent the original
message (FA 2)

• Final Acknowledgement messages and Delivery
Failure messages themselves MAY, if required, need
to be sent reliably using acks (FAs 2 and 3)

• An Implicit ack MAY replace an Explicit Ack (UC 8)
• Implicit acks and Explicit acks MAY be used on each

leg of a multi-hop route (UCs 9 & 10)
• Implicit and explicit acks MUST NOT be mixed on a

single conversation over one hop (UCs 9 & 10)

11/2/2000 Diagram 27 Summary Requirements - 3

• An MSH may receive a message that is an
acknowledgement from a different MSH to the one
that was sent the original message.

• An Intermediate MSH MUST keep track of messages
that were sent as an acknowledgement to an earlier
message and send back the latest message sent (UC
13)

• An MSH SHOULD send a Wait Message if a
duplicate message is received before the response
(either an implicit or explicit ack) is ready to be sent
(UC 14)

• Messages MUST have a maximum lifetime for
duplicate filtering purposes (UC 15)

11/2/2000 Diagram 28

Sender and Receiver Rules

The following two pages contain “rules” that
govern the behavior of a sender or receiver of a

reliable message. They are a start and are not yet
complete but reflect the ideas in earlier pages.

11/2/2000 Diagram 29 Reliable Messaging Rules - Sender

The behavior of the Source MSH that is a sender of a normal
message, that is not a message that is acknowledging another,
follows these “rules”:
1. If the message that was sent (the “original message”) does not result in

the return of a message (the “acknowledgement message”) that contains
a RefToMessageId of the message that was sent then resend the original
message

2. If, after several resends of the original message, no acknowledgement
message is received then, if required, inform the source of the original
message. The source may be:
1. An application or other process that requested the message be sent, or
2. Another Message Service Handler.

3. If the source of the message is an application or process then the source
should be informed. How this is done is implementation dependent.

4. If the source of the original message is another MSH (the “source MSH”)
then, if required send the source MSH a Delivery Failure Message

5. If Delivery Failure Messages must be sent reliably then treat them as a
normal message (see Rule 1 above). If after several resends, no
acknowledgement message is received then inform the Source MSH by
other means such as, email, telephone, etc, if required

11/2/2000 Diagram 30 Reliable Messaging Rules – Receiver 1

The receiver of a normal message that is not acknowledging
another message follows these rules:
1. If the normal message that is received (the original message) from a

Source MSH contains a Message Id that has not been received
before then:
1. Forward the message to its destination, and
2. If an explicit acknowledgement is required, generate an explicit

acknowledgement message and send it to the Source MSH
2. The destination may be:

1. An application or other process that needs to receive the message, or
2. Another Message Service Handler (the destination MSH).

3. If the destination is a MSH then:
1. Forward the original message to the destination MSH with a new Routing

Header and treat it as a normal message from a source MSH (see
previous slide)

4. If the receiver of the normal message is the final destination of the
message then any explicit acknowledgement must be a final
acknowledgement otherwise it is an intermediate acknowledgement

11/2/2000 Diagram 31 Reliable Messaging Rules – Receiver 2

5. If the normal message that is received from a Source MSH
contains a Message Id that has been received before then:
1. Do not forward the message to its destination
2. If a message has been sent to the Source MSH that

acknowledges the original message, then resend the message
to the Source MSH

3. If no message has been sent to the Source MSH that
acknowledges the original message, then send a wait
message to the Source MSH

6. “Before” implies that the MSH persists MessageIds for
some period of time. The way this time is decided is to be
determined

