 Author: Prasad Yendluri

1 Synchronous Messaging

1.1 Purpose

The purpose of this document is to define Synchronous Messaging and the issues involved within the context of ebXML Message Service; identify a set of requirements for potential approaches for a solution; and make a proposal that satisfies the requirements.

1.2 Overview

The ebXML Message Service defines a protocol for reliable and secure exchanges of messages between the service end-points of the parties (and intermediaries) involved. The specification so far has been tacitly geared towards an asynchronous message exchange paradigm, with no explicit specification for synchronous exchange of messages. Synchronous message exchange is here with defined to be the exchange of the request and the resulting reply message(s) on the same communication protocol level connection (e.g. on the same HTTP connection with reply conveyed in the body of the HTTP response).

A typical e-business conversation in ebXML messaging involves the exchange of several messages; the initial “request message” sent by the initiating party, resulting zero or more acknowledgement messages, followed by a “response message” (if any) from the receiving party.

[image: image1.wmf]Initiating Party

Receiving Party

 MSH

 MSH

1. Request Message

2. Acknowledgement

4. Response Message

3. Acknowledgement

Figure 1 Typical Message Exchange
In the figure above, a direct exchange between an initiating and the receiving parties is shown. However, it is possible for the messages to be routed through one or more intermediaries for eventual delivery to the receiving party. As identified in the reliable messaging section of the latest draft (0.9) of the ebXML Message Service specification, each of the intermediary nodes could generate an IntermediateAcknowledgement message, in addition to the DeliveryReceipt acknowledgement message that could be sent by the receiving MSH. However, only the IntermediateAcknowledgement from the first intermediary is ever delivered to the initiating MSH. Hence the initiating side would only see a maximum of two acknowledgment messages, an IntermediateAcknowledgement from the first intermediary, a DeliveryReceipt from the receiving MSH in addition to the response message from the receiving party
. The figure below shows the message exchanges with a generic case of intermediaries involved, with all possible acknowledgements included.

[image: image2.wmf]Request Message

Request Message

Request Message

Response Message

Response Message

Response Message

IntermediateAck

IntermediateAck

DeliveryReceipt

DeliveryReceipt

DeliveryReceipt

Initiating

Party

Receiving

Party

Intermediary

 A

Intermediary

 B

 MSH

 MSH

 MSH

 MSH

Figure 2 Message exchange with Intermediaries
Only two intermediary nodes are shown above but this can be extended to a generic case of three or more intermediaries following the same message exchange pattern shown. It should be noted that the response message could be either a positive or error response message
.

In an asynchronous message exchange paradigm, each of the messages (in either figure 1 or figure 2) is transmitted over an independent communication protocol level connection. For synchronous exchange when the initiating and responding parties communicate directly with no intermediaries involved (figure 1), the situation is simpler with only one communication protocol level connection between the two nodes, over which the messages are exchanged. However, when intermediaries are involved in a synchronous message exchange scenario, the situation is more complex and one needs to define how the message exchange takes place synchronously.

There can only be a synchronous connection between two nodes. In addition, it is really the initiator of the message exchange (Initiating party) that needs to receive the reply messages synchronously. Hence only the connection (and hence the message exchange) between the initiating party and the intermediary that the initiating party communicates with (Intermediary-A in figure 2) needs to be synchronous. However, for the reply messages to be delivered synchronously to the initiating party within the timeout constraints of the communication level connection, it is essential that the message exchanges between all other node pairs on the message path are also synchronous
.

1.3 Requirements

Following are the requirements for the synchronous message exchange.

· Initiator of a message exchange must be able to receive the reply messages synchronously, when communicating with the receiving party either directly or through intermediaries. The reply messages are defined to be the IntermediateAcknowledgement, DeliveryReceipt and the response message.

· Either of the acknowledgment messages and the response message may or may not be returned to the initiator based on the parameters of the e-business conversation (CPA). Hence it should be possible for the initiator to specify and receive either of the acknowledgement messages only and or the response message only synchronously. However, if the response message is returned synchronously, all the acknowledgement messages that need to be returned (if any) must also be returned synchronously
.

· It is possible for the DeliveryReceipt acknowledgement to be embedded in the response message. Hence if synchronous messaging is involved, DeliveryReceipt acknowledgement must be embedded in the response message using the Acknowledgement element of the ebXML Header.

· The IntermediateAcknowledgement and the response message (with potentially embedded DeliveryReceipt) in separate ebXML messages must be returned within the same communication protocol level response (e.g. as concatenated ebXML message instances in the body of HTTP response is separate; or as populated elements of the ebXML Header of the response message).

· The specification for synchronous replies must be independent of the underlying communication protocol used to exchange messages. If the underlying communication protocol does not support synchronous message exchange (e.g. SMTP), the specification should be ignored. That is, the message should be processed for an asynchronous response with the ErrorList element of the ebXML header populated with a corresponding “warning” message, in the response returned.

· The synchronous reply (acknowledgement and/or response) requirements must specified by the initiating party, based on a prior collaboration protocol agreement (CPA) between the initiating and receiving parties, with all intermediaries honoring the requirement. Hence the ebXML Header and the CPA specifications must define parameters to support this.

· In addition to the Acknowledgment and response messages, error messages should also be conveyed synchronously, if the requesting message results in an error response.

· All the intermediary nodes must always support synchronous replies, subject only to the constraints of the underlying communication protocol. This is irrespective of the CPA between the collaborating parties.

· The synchronous reply specification in the request message sent by the initiator must be consistent with the collaboration protocol agreement (CPA) between the two collaborating parties. It is an error for a message to contain synchronous reply specification if the CPA does not accommodate for one. In such situation, the receiving party must return an error response synchronously.

· Only the messages that initiate an e-business conversation can have the synchronous reply specification. None of the reply messages can have a synchronous reply specification.

1.4 Proposal

This section describes the proposed parameters to control the synchronous messaging that go in the ebXML Header and the Collaboration Protocol Profiles (CPP) / Collaboration Protocol Agreements (CPA).

1.4.1 ebXMLHeader Parameters

A new element called “SynchronousMessagingInfo” should be added to the Header element of the ebXMLHeader. The new element has one attribute called syncReplyMode. The possible values for the syncReplyMode attribute are:

· AcksOnly – Only acknowledgements should be returned synchronously. This option to be used when the sender needs a confirmation that the message is received successfully but the business response need not or cannot be delivered synchronously. E.g. when there is significant backend processing involved or when the responding party has constraints to deliver a response synchronously.

· ResponseOnly – Only response should be returned synchronously. This option can only be used when the e-business conversation (in the CPA) and the initiating message do not call for any acknowledgements.

· AcksAndResponse – Both Acknowledgement and response messages should be delivered synchronously.
Given below is an example instance showing the use of the SynchronousMessagingInfo element, followed by normative definitions in both DTD and XSD formats.

Example Instance:

<SynchronousMessagingInfo syncReplyMode=”ResponseOnly”>

</SynchronousMessagingInfo>

DTD Schema:

<!ELEMENT SynchronousMessagingInfo EMPTY>

<!ATTLIST SynchronousMessagingInfo

 syncReplyMode(AcksOnly | ResponseOnly | AcksAndResponse) #REQUIRED

>

Add SynchronousMessagingInfo as a top-level optional element in the Header element, following the ReliableMessagingInfo element.

XSD Schema:
Parts in bold face are the additions for SynchronousMessagingInfo

<xsd:element name = "Header">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref = "From"/>

 <xsd:element ref = "To"/>

 <xsd:element ref = "CPAId"/>

 <xsd:element ref = "ConversationId"/>

 <xsd:element ref = "Service"/>

 <xsd:element ref = "Action"/>

 <xsd:element ref = "MessageData"/>

 <xsd:element ref = "ReliableMessagingInfo" minOccurs = "0”/>

 <xsd:element ref = "SynchronousMessagingInfo" minOccurs = "0" maxOccurs = "1”/>

 <xsd:any namespace = "##any" processContents="lax" minOccurs="0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:element name = "SynchronousMessagingInfo">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base = "SynchronousMessagingInfo">

 <xsd:attribute name = "syncReplyMode" use = "required">

 <xsd:simpleType>

 <xsd:restriction base = "xsd:NMTOKEN">

 <xsd:enumeration value = "AcksOnly"/>

 <xsd:enumeration value = "ResponseOnly"/>

 <xsd:enumeration value = "AcksAndResponse"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:element>
1.4.2 CPP/CPA parameters

The synchronous reply specification should be added to the DeliveryChannel as another attribute to Characteristics element. The name of the attribute is syncReplyMode with values and semantics same as in the ebXMLHeader:

· AcksOnly
· ResponseOnly
· AcksAndResponse.
Here is the example instance with the syncReplyMode part in bold face.

<DeliveryChannel channelId = "N04" transportId = "N05" docExchangeId = "N06">

 <Characteristics nonrepudiationOfOrigin = "true"

 nonrepudiationOfReceipt = "true"

 secureTransport = "true"

 syncReplyMode = "AcksAndResponse"

 confidentiality = "true"

 authenticated = "true"

 authorized = "true"/>

 <ServiceBinding xlink:type = "locator"

 xlink:href = "http://www.ebxml.org/services/purchasing">Buy and Sell</ServiceBinding>

</DeliveryChannel>

1.5 Alternatives Considered
An alternative of specifying communication level parameters (e.g. HTTP POST level MIME headers) was considered, but discarded as that approach requires ebXML to specify the synchronous reply parameters on a per communication protocol basis and in a communication protocol dependent way. Additionally with that approach the issue of synchronous messaging needs to be revisited each time a new communication protocol support is added or the support parameters for an existing protocol are modified.
1.6 Issues

· It is necessary for the intermediary node and receiver MSHs to look for and process SynchronousMessagingInfo header element, so that they do not terminate the communication protocol level connection prematurely. Having to do this for all messages to find those that require synchronous reply is probably an unnecessary overhead. However, this may not be an issue since they are already required to look into other header elements such as the RoutingHeaderList (and even rewrite the Header).

· If a communication protocol connection level timeout occurs on any of the nodes, prior to a synchronous response being available, that node should return an error response with the “errorMessage” attribute of the Error element set to a string indicating a communication protocol level timeout.

· For synchronous exchanges, retries are not applicable since, the response is sent back on the same connection. Any retires would constitute a new conversation, with a new ConversationId etc.

· For synchronous exchanges, it is invalid to have an ErrorURI since all replies including error responses are delivered on the same communication protocol level connection.

· The initiator may not get a response that a responder sent, if one of the intermediary nodes fails. That is, the responder thinks a response had been successfully sent. However, initiator may not have received it. Hence, when intermediaries are involved synchronous messaging should only be used for non-critical business processes (e.g. a registry look-up).

· When synchronous messaging is involved, DeliveryReceipt and IntermediateAcks should only be asked for, if and only if non-repudiation requirements call for it. Where non-repudiation beyond the response returned is unimportant, it is recommended that such acknowledgments not be a part of the e-business conversation (as specified in the CPP/CPA).

· Need to capture where the timeout values for the communication protocol level connections are specified in the CPA. Also, how do the timeout values as specified in the CPAs between the collaborating business parties, apply to the intermediaries? That is, how can we have consistent communication protocol connection timeout value across all nodes on the message path?

1.7 Example Scenario with HTTP
The first diagram below shows a synchronous response using HTTP communication protocol. In this case syncReplyMode is AcksAndResponse. Here the response and the acknowledgements come back together in the synchronous reply:

[image: image3.wmf]

Receiver

MSH

HTTP Handler

Sender

MSH

HTTP Handler

ebXML Message

 Request Message

Sender

Party

Payload Data

Receiver

Party

Payload Data

Payload Data

Payload Data

ebXML Message

Response Messag

e

ebXML Message

Response Message

If

syncReplyMode

=

AcksAndResponse

then could

contain:

•

business response

•

acknowledgement

•

warning level error

HTTP 200 OK

HTTP POST

Please note that the case for syncReplyMode of ResponseOnly would be the same as above, without the Acknowledgement elements in the ebXML Header of the reply ebXML Message.

The second diagram below shows an example case for synchronous acknowledgements and a subsequent asynchronous response when using HTTP communication protocol. In this case syncReplyMode is AcksOnly:

[image: image4.wmf]

Receiver

MSH

HTTP Handler

Sender

MSH

HTTP Handler

ebXML Message

Request Message

Sender

Party

Payload Data

Receiver

Party

Payload Data

Payload Data

Payload Data

ebXML

Message

Response Message (HTTP Post)

ebXML Message

Response Message

If

syncReplyMode

=

AcksOnly

then could contain:

•

acknowledgement

•

warning level error

ebXML Message

Delivery Receipt (HTTP Response)

ebXML Message

Delivery Receipt

eb

XML Message

Delivery Receipt

HTTP POST

HTTP POST

HTTP 200 OK

HTTP 200 OK

� Note that one way messaging, where no acknowledgement and response messages are sent back by the receiving side are not discussed here, as they are not relevant to this discussion.

� Per the 0.9 version of the ebXML Message Service draft specification, one can have in one message a combination of a warning error response, a business response and an acknowledgement.

� Theoretically (and perhaps not pragmatically), one could still imagine the situation where a rapid asynchronous response could still meet any timeout constraints that are imposed by the synchronous initial leg.

� As described in version 0.9 of the ebXML Message Service draft specification, the response and the acknowledgements can be returned in the same ebXML message instance.

_1038927330.unknown

_1039943363.doc

Receiver

MSH

HTTP Handler

Sender

MSH

HTTP Handler

ebXML Message

 Request Message

Sender

Party

Payload Data

Receiver

Party

Payload Data

Payload Data

Payload Data

ebXML Message

Response Message

ebXML Message

Response Message

If

syncReplyMode

=

AcksAndResponse

then could

contain:

•

business response

•

acknowledgement

•

warning level error

HTTP POST

HTTP 200 OK

_1039946028.doc

Receiver

MSH

HTTP Handler

Sender

MSH

HTTP Handler

ebXML Message

Request Message

Sender

Party

Payload Data

Receiver

Party

Payload Data

Payload Data

Payload Data

ebXML Message

Response Message (HTTP Post)

ebXML Message

Response Message

If

syncReplyMode

=

AcksOnly

then could contain:

•

acknowledgement

•

warning level error

ebXML Message

Delivery Receipt (HTTP Response)

ebXML Message

Delivery Receipt

ebXML Message

Delivery Receipt

HTTP POST

HTTP POST

HTTP 200 OK

HTTP 200 OK

_1038924194.unknown

