

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Message Service Specification

ebXML Transport, Routing & Packaging

Version 0.930.92

 2 18 February 2001January 2001

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 2 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

1 Status of this Document
This document specifies an ebXML DRAFT for the eBusiness community Distribution of this
document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format converted to
Microsoft Word 2000 format.

This version
http://www.ebxml.org/working/project_teams

Latest version
http://www.ebxml.org

Previous version

http://www.ebxml.org/…

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 3 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

2 ebXML Participants
The authors wish to acknowledge the support of the members of the Transport, Routing and
Packaging Project Team who contributed ideas to this specification by the group’s discussion
email list, on conference calls and during face-to-face meeting.

Ralph Berwanger – bTrade.com
Jonathan Borden – Author of XMTP
Jon Bosak – Sun Microsystems
Marc Breissinger – webMethods
Dick Brooks – Group 8760
Doug Bunting – Ariba
David Burdett – Commerce One
Len Callaway – Drummond Group, Inc.
David Craft – VerticalNet
Philippe De Smedt – Viquity
Lawrence Ding – WorldSpan
Rik Drummond – Drummond Group, Inc. (Representing XML Solutions)
Christopher Ferris – Sun Microsystems
Maryann Hondo – IBM
Jim Hughes – Fujitsu
John Ibbotson – IBM
Ian Jones – British Telecommunications
Ravi Kacker – Kraft Foods
Nick Kassem – Sun Microsystems
Henry Lowe – OMG
Jim McCarthy – webXI
Bob Miller – GSX
Andrew Eisenberg – Progress Software
Dale Moberg – Sterling Commerce
Joel Munter – Intel
Farrukh Najmi – Sun Microsystems
Akira Ochi – Fujitsu
Martin Sachs, IBM
Masayoshi Shimamura – Fujitsu
Kathy Spector – Extricity
Nikola Stojanovic – Columbine JDS Systems
Gordon Van Huizen – Process Progress Software
Martha Warfelt – Daimler Chrysler
Prasad Yendluri – Web Methods

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 4 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

3 Table of Contents
1 Status of this Document .. 2

2 ebXML Participants ... 3

3 Table of Contents.. 4

4 Introduction ... 8
4.1 Summary of Contents of Document ... 8
4.2 Document Conventions .. 9
4.3 Audience... 9
4.4 Caveats and Assumptions.. 9
4.5 Related Documents .. 9

5 Design Objectives ... 11

6 System Overview .. 12
6.1 What the Message Service does.. 12
6.2 Message Service Overview .. 12

7 Packaging Specification .. 14
7.1 Introduction ... 14

7.1.1 ebXML Header Envelope and ebXML Payload Envelope ... 14
7.2 ebXML Message Envelope... 15

7.2.1 Content-Type... 15
7.2.1.1 type Attribute...15
7.2.1.2 boundary Attribute...15
7.2.1.3 version Attribute ..15

7.2.2 ebXML Message Envelope Example... 15
7.3 ebXML Header Container... 16

7.3.1 Content-ID ... 16
7.3.2 Content-Type... 16

7.3.2.1 version Attribute ..16
7.3.2.2 charset Attribute ..16

7.3.3 ebXML Header Envelope Example.. 17
7.4 ebXML Payload Container.. 17

7.4.1 Content-ID ... 18
7.4.2 Content-Type... 18
7.4.3 Example of an ebXML MIME Payload Container... 18

7.5 Additional MIME Parameters.. 18
7.6 Reporting MIME Errors... 18

8 ebXML Header Document... 19
8.1 XML Prolog ... 19

8.1.1 XML Declaration .. 19
8.1.2 Encoding Declaration .. 19
8.1.3 Standalone Document Declaration.. 19
8.1.4 Document Type Declaration .. 20

8.2 ebXMLHeader Element .. 20
8.2.1 ebXMLHeader attributes.. 20

8.2.1.1 Namespace attribute ...20
8.2.1.2 version attribute...20

8.2.2 ebXMLHeader elements.. 20

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 5 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.3 Combining Principal Header Elements .. 21
8.2.3.1 Manifest element...21
8.2.3.2 Header element...21
8.2.3.3 RoutingHeaderList element ...21
8.2.3.4 ApplicationHeaders element..21
8.2.3.5 StatusData element...21
8.2.3.6 ErrorList element...21
8.2.3.7 Acknowledgment element ...21
8.2.3.8 Signature element ...21
8.2.3.9 #wildcard element content...22

8.2.4 ebXMLHeader sample... 22
8.3 Manifest element .. 22

8.3.1 Reference element .. 22
8.3.1.1 Schema element ...23
8.3.1.2 Description element...23
8.3.1.3 #wildcard element ...23

8.3.2 What References are Included in a Manifest... 23
8.3.3 Manifest Validation .. 23
8.3.4 Manifest sample .. 23

8.4 Header element .. 24
8.4.1 From and To elements .. 24
8.4.2 CPAId element .. 24
8.4.3 ConversationId element... 25
8.4.4 Service element... 25

8.4.4.1 type attribute ...25
8.4.4.2 ebXML Message Service namespace..25

8.4.5 Action element... 25
8.4.6 MessageData element... 26

8.4.6.1 MessageId element ...26
8.4.6.2 Timestamp element...26
8.4.6.3 RefToMessageId element ...26
8.4.6.4 TimeToLive element..26

8.4.7 QualityOfServiceInfo element.. 27
8.4.7.1 deliverySemantics attribute..27
8.4.7.1 messageOrderSemantics attribute ..27
8.4.7.2 DeliveryReceiptRequested attribute ..28
8.4.7.3 syncReplyMode attribute ...28

8.4.8 SequenceNumber element.. 29
8.4.9 Description element... 30
8.4.10 #wildcard element.. 30
8.4.11 Header sample .. 30

8.5 RoutingHeaderList element .. 30
8.5.1 Routing Header Element ... 31

8.5.1.1 reliableMessagingMethod attribute ..31
8.5.1.2 intermediateAckRequested attribute..31
8.5.1.3 SenderURI element...31
8.5.1.4 ReceiverURI element ..32
8.5.1.5 ErrorURI element ..32
8.5.1.6 Timestamp element...32
8.5.1.7 SequenceNumber element..32
8.5.1.8 #wildcard element ...32

8.5.2 Single Hop Routing Header Sample.. 33
8.5.3 Multi-hop Routing Header Sample... 34

8.6 ApplicationHeaders Element .. 35
8.6.1 ApplicationHeaders sample... 35

8.7 StatusData Element.. 35
8.8 ErrorList Element .. 36

8.8.1 id attribute.. 36
8.8.2 highestSeverity attribute .. 36
8.8.3 Error element... 36

8.8.3.1 codeContext attribute ..36

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 6 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.8.3.2 errorCode attribute ..36
8.8.3.3 severity attribute..36
8.8.3.4 location attribute..37
8.8.3.5 errorMessage attribute ..37
8.8.3.6 softwareDetails attribute ..37

8.8.4 Examples... 37
8.8.5 errorCode values ... 38
8.8.6 Reporting Errors in the ebXML Header Document .. 38
8.8.7 Non-XML Document Errors ... 38

8.9 Acknowledgment Element .. 39
8.9.1 Timestamp element ... 40
8.9.2 From element .. 40
8.9.3 type attribute.. 40
8.9.4 signed attribute.. 40

8.10 Signature Element .. 40
9 Message Service Handler Services .. 41

9.1 Message Status Request Service .. 41
9.1.1 Message Status Request Message... 41
9.1.2 Message Status Response Message .. 41
9.1.3 Security Considerations... 42

9.2 Message Service Handler Ping Service ... 42
9.2.1 Message Service Handler Ping Message.. 42
9.2.2 Message Service Handler Pong Message... 42
9.2.3 Security Considerations... 43

10 Reliable Messaging... 44
10.1.1 Persistent Storage and System Failure ... 44
10.1.2 Methods of Implementing Reliable Messaging .. 44

10.2 ebXML Reliable Messaging Protocol ... 44
10.2.1 Single-hop Reliable Messaging ... 45

10.2.1.1 Sending Message Behavior...45
10.2.1.2 Receiving Message Behavior ..46
10.2.1.3 Resending Lost Messages and Duplicate Filtering ..47

10.2.2 Multi-hop Reliable Messaging.. 49
10.2.2.1 Multi-hop Reliable Messaging without Intermediate Acknowledgments..49
10.2.2.2 Multi-hop Reliable Messaging with Intermediate Acknowledgments ..50

10.3 ebXML Reliable Messaging using Queuing Transports ... 51
10.4 Service and Action Element Values ... 52
10.5 Failed Message Delivery .. 52
10.6 Reliable Messaging Parameters... 53

10.6.1 Who sets Message Service Parameters.. 53
10.6.2 From Party Parameters ... 54

10.6.2.1 Delivery Semantics..54
10.6.2.2 Delivery Receipt Requested ..55
10.6.2.3 Sync Reply Mode ..55
10.6.2.4 Time To Live ...55

10.6.3 To Party Parameters ... 55
10.6.3.1 Delivery Receipt Provided ...55

10.6.4 Sending MSH Parameters... 55
10.6.4.1 Reliable Messaging Method ..55
10.6.4.2 Intermediate Ack Requested ...55
10.6.4.3 Timeout Parameter..56
10.6.4.4 Retries Parameter ...56
10.6.4.5 RetryInterval Parameter ..56
10.6.4.6 Deciding when to resend a message...56

10.6.5 Receiving MSH Parameters .. 56
10.6.5.1 Reliable Messaging Methods Supported ...56
10.6.5.2 PersistDuration..56

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 7 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

10.6.5.3 MSH Time Accuracy..57
11 Error Reporting and Handling ... 58

11.1 Definitions ... 58
11.2 Types of Errors ... 58
11.3 When to generate Error Messages .. 58

11.3.1 Security Considerations... 58
11.4 Identifying the Error Reporting Location... 58
11.5 Service and Action Element Values ... 59

12 Security ... 60
12.1 Security and Management.. 60
12.2 Collaboration Protocol Agreement ... 60
12.3 Countermeasure Technologies .. 60

12.3.1 Persistent Digital Signature ... 60
12.3.1.1 Signature Generation ..61

12.3.2 Persistent Signed Receipt ... 62
12.3.3 Non-persistent Authentication.. 62
12.3.4 Non-persistent Integrity ... 62
12.3.5 Persistent Confidentiality ... 63
12.3.6 Non-persistent Confidentiality.. 63
12.3.7 Persistent Authorization... 63
12.3.8 Non-persistent Authorization ... 63
12.3.9 Trusted Timestamp.. 63

13 Synchronous and Asynchronous Responses.. 66

14 References.. 67
14.1 Normative References.. 67
14.2 Non-Normative References .. 67

15 Disclaimer ... 69

16 Contact Information... 70

Appendix A ebXMLHeader Schema and Data Type Definitions 72
A.1 Schema Definition .. 72
A.2 Data Type Definition ... 76

Appendix B Examples... 77

Appendix C Communication Protocol Interfaces... 78
C.1 HTTP .. 78
C.1.1 Asynchronous HTTP .. 78
C.1.2 Synchronous HTTP .. 79
C.1.3 Use of Error Codes... 79
C.2 SMTP.. 80
A.1 81
C.3 Communication Errors during Reliable Messaging .. 81

Appendix D Request for MIME media type Application/Vendor Tree - vnd......... 82

Copyright Statement .. 84

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 8 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

4 Introduction 1

This is a draft standard for trial implementation. The This specification is the one of a series of 2
specifications. The main specification that is yet to be developed is the ebXML Service Interface 3
specification that describes, in a language independent way, how an application or other process 4
can interact with software that complies with this ebXML Message Service specification. The 5
ebXML Service Interface specification is being developed as a separate document. It will be 6
included in a later version of this specification or as an additional specification.It SHALL either be 7
incorporated into a future version of this specification or referenced as an external specification 8
as deemed most suitable by the ebML Transport, Routing and Packaging project team. 9

4.1 Summary of Contents of Document 10

This specification defines the ebXML Message Service protocol that enables the secure and 11
reliable exchange of messages between two parties. It includes descriptions of: 12

• the ebXML Message structure used to package payload data for transport between 13
parties 14

• the behavior of the Message Service Handler that sends and receives those messages 15
over a data communication protocol. 16

This specification is independent of both the payload and the communication protocol used, 17
although Appendices to this specification describe how to use this specification with [HTTP] and 18
[SMTP]. 19

This specification is organized around the following topics: 20
• Packaging Specification – A description of how to package an ebXML Message and its 21

associated parts into a form that can be placed into the body of asent using a 22
communications protocol such as HTTP or SMTP (section 7) 23

• Message Headers – A specification of the structure and composition of the information 24
necessary for an ebXML Message Service to successfully generate or process an ebXML 25
compliant message. This is represented as an XML document called the ebXML Header 26
document (section 8) 27

• Message Service Handler Services – A description of two services that enable one 28
service to discover the status of another Message Service Handler or an individual 29
message (section 9) 30

• Reliable Messaging – The Reliable Messaging function defines an interoperable protocol 31
such that any two Message Service implementations can “reliably” exchange messages 32
that are sent using “reliable messaging” semantics (section 10) 33

• Error Handling – This section describes how one ebXML Message Service reports errors 34
it detects to another ebXML Message Service Handler (section 11) 35

• Security – This provides a complete specification of the security requirements semantics 36
for ebXML Messages (section12). 37

Appendices to this specification cover the following: 38
• Appendix A Schemas and DTD Definitions – This contains [XML Schema] and [XML] 39

Data Type Definitions for the ebXML Header document. Section A.1 is normative while 40
Section A.2 is non-normative. 41

• Appendix B Examples – This contains a non-normative sample message content 42
• Appendix C Communication Protocol Envelope Mappings – This normative appendix 43

describes how to transport ebXML Message Service compliant messages over [HTTP] 44
and [SMTP] 45

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 9 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• Appendix D Reliable Messaging Protocol Logic – this non-normative appendix provides 46
processing logic that describes the behavior of a Message Service Handler when sending 47
or receiving messages with reliable deliveryRegistration of MIME media type 48
Application/Vendor Tree—vnd – This non-normative appendix contains the registration 49
information that was forwarded to IANA to register the MIME subtype vnd.eb+xml. 50

4.2 Document Conventions 51

Terms in Italics are defined in the ebXML Glossary of Terms [Glossary]. Terms listed in Bold 52
Italics represent the element and/or attribute content of the XML ebXMLHeader. Terms listed in 53
Courier font relate to MIME components. 54

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, 55
RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be 56
interpreted as described in RFC 2119 [Bra97] as quoted here:. 57

Note that the force of these words is modified by the requirement level of the document in which 58
they are used. 59

• MUST: This word, or the terms “REQUIRED” or “SHALL”, means that the definition is an 60
absolute requirement of the specification. 61

• MUST NOT: This phrase, or the phrase “SHALL NOT”, means that the definition is an 62
absolute prohibition of the specification. 63

• SHOULD: This word, or the adjective “RECOMMENDED”, means that there may exist 64
valid reasons in particular circumstances to ignore a particular item, but the full 65
implications must be understood and carefully weighed before choosing a different 66
course. 67

• SHOULD NOT: This phrase, or the phrase “NOT RECOMMENDED”, means that there 68
may exist valid reasons in particular circumstances when the particular behavior is 69
acceptable or even useful, but the full implications should be understood and the case 70
carefully weighed before implementing any behavior described with this label. 71

• MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One 72
vendor may choose to include the item because a particular marketplace requires it or 73
because the vendor feels that it enhances the product while another vendor may omit the 74
same item. An implementation which does not include a particular option MUST be 75
prepared to interoperate with another implementation which does include the option, 76
though perhaps with reduced functionality. In the same vein an implementation which 77
does include a particular option MUST be prepared to interoperate with another 78
implementation which does not include the option (except, of course, for the feature the 79
option provides.) 80

4.3 Audience 81

The target audience for this specification is the community of software developers who will 82
implement the ebXML Message Service. 83

4.4 Caveats and Assumptions 84

It is assumed that the reader has an understanding of transport protocols, MIME, XML and 85
security technologies. 86

4.5 Related Documents 87

The following set of related specifications will be delivered in phases: 88
• ebXML Message Services Requirements Specification [EBebXMLMSREQ] – defines 89

the requirements of the these Message Services 90

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 10 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• ebXML Technical Architecture [EBXMLTA] – defines the overall technical architecture 91
for ebXML 92

• ebXML Technical Architecture Security Specification [EBXMLTASEC] – defines the 93
security mechanisms necessary to negate anticipated, selected threats 94

• ebXML Collaboration Protocol Profile and Agreement Specification [EBebXMLTP] 95
(under development) - defines how one party can discover and/or agree upon the 96
information that party needs to know about another party prior to sending them a 97
message that complies with this specification 98

• ebXML Message Service Interface Specification (to be developed) - defines an 99
interface that may be used by software to interact with an ebXML Message Service 100

• ebXML Registry Services Specification [EBXMLRSS] – defines a registry service for 101
the ebXML environment 102

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 11 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

5 Design Objectives 103

The design objectives of this specification are to define a Message Service (MS) to support XML 104
based electronic business between small, medium and large enterprises.The design objectives of 105
this specification are to define a wire format and protocol for a Message Service (MS) to support 106
XML-based electronic business between small, medium, and large enterprises. While the 107
specification has been primarily designed to support XML-based electronic business, the authors 108
of the specification have made every effort to ensure that non-XML business information is fully 109
supported. This specification is intended to enable a low cost solution, while preserving a 110
vendor's ability to add unique value through added robustness and superior performance. It is the 111
intention of the Transport, Routing and Packaging Project Team to keep this specification as 112
straightforward and succinct as possible. 113

Every item in this specification will be prototyped by the ebXML Proof of Concept Team in order 114
to ensure the clarity and accuracy of this specificationclarity, accuracy and efficiency of this 115
specification. 116

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 12 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

6 System Overview 117

This document defines the ebXML Message Service (MS) component of the ebXML 118
infrastructure. The ebXML Message Service defines the message enveloping and header 119
document schema used to transfer ebXML Messages over a communication protocol such as 120
HTTP, SMTP, etc. This document provides sufficient detail to develop software for the packaging, 121
exchange and processing of ebXML Messages. 122

6.1 What the Message Service does 123

The ebXML Message Service defines robust, yet basic, functionality to transfer messages using 124
various existing communication protocols. The ebXML Message Service will perform in a manner 125
that will allow for reliability, persistence, security and extensibility. 126

The ebXML Message Service is provided for environments requiring a robust, yet low cost 127
solution to enable electronic business. It is one of the three "infrastructure" components of ebXML 128
that includes:; the other two are Registry/Repository [ebXMLRegRep], Collaboration Protocol 129
Profile/Agreement [ebXMLTP] and the ebXML Message Service. 130

6.2 Message Service Overview 131

The ebXML Messaging Service may be conceptually broken down into following three parts: (1) 132
an abstract Service Interface, (2) functions provided by the Messaging Service Layer, and (3) the 133
mapping to underlying transport service(s). 134

The following diagram depicts a logical arrangement of the functional modules that exist within 135
the one possible implementation of the ebXML Messaging Services architecture. These modules 136
are arranged in a manner to indicate their inter-relationships and dependencies. 137

• Header Processing - the creation of the ebXMLHeader document for the ebXML 138
Message uses input from the application, passed through the Message Service Interface, 139
information from the CPA that governs the message, and generated information such as 140
digital signature, timestamps and unique identifiers. 141

• Header Parsing - extracting or transforming information from a received ebXMLHeader 142
into a form that is suitable for processing by the MSH implementation. 143

• Security Services - digital signature creation and verification, authentication and 144
authorization. These services MAY be used by other components of the MSH including 145
the Header Processing and Header Parsing components. 146

• Reliable Messaging Services - handles the delivery and acknowledgment of ebXML 147
Messages sent with deliverySemantics of OnceAndOnlyOnce. The service includes 148
handling for persistence, retry, error notification and acknowledgment of messages 149
requiring reliable delivery. 150

• Message Packaging - the final enveloping of an ebXML Message (ebXMLHeader and 151
payload) into its MIME multipart/related container 152

• Error Handling - this component handles the reporting of errors encountered during MSH 153
or Application processing of a message as well as processing of received messages that 154
have an ErrorList element detailing an error reported by a foreign MSH on a message 155
previously sent by the MSH. 156

• Notification - <rb>add additional text here for description </rb> 157
• Message Service Interface - an abstract service interface that applications use to interact 158

with the MSH to send and receive messages and which the MSH uses to interface with 159
applications that handle received messages. 160

 161

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 13 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

HTTP SMTP IIOP FTP …

ebXML Applications

Messaging Service Interface

Messaging Service

Authentication, authorization and
repudiation services

Header Processing

Encryption, Digital Signature

Message Packaging Module

Delivery Module
Send/Receive

Transport Mapping and Binding

 162

Figure 6-1 Typical Relationship between ebXML MSH Components 163

<DB>Diagram needs to be simplified and an explanation of these components needs to be 164
provided. (Ralph & Chris)</DB> 165

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 14 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7 Packaging Specification 166

7.1 Introduction 167

An ebXML Message consists of two parts: 168
• an outer Communication Protocol Envelope, such as HTTP or SMTP, 169
• an inner communication “protocol independent” ebXML Message Envelope, specified 170

using MIME multipart/related, that contains the two main parts of the Message: 171
- an ebXML Header Container that is used to envelope one ebXML Header Document, 172
- an optional, singleat most one ebXML Payload Container that MUST be used to 173

envelope the actual payload (transferred data) of the Message Communication 174
Protocol Envelope (SMTP, HTTP, etc) 175

Communication Protocol Envelope (SMTP, HTTP, etc)

ebXML Message Envelope (MIME
multipart/related)

ebXML Header Envelope (MIME)

ebXML Header Document (XML)

Manifest

Header

ebXML Payload Envelope (MIME)

Payload Document(s)

ebXML
Header

Container

ebXML
Payload

Container

etc ...

Figure 7-1 ebXML 176
Message Structure 177

7.1.1 ebXML Header Envelope and ebXML Payload Envelope 178

An ebXML Header Envelope and an ebXML Payload Envelope are constructed of standard, 179
MIME components. 180

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 15 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The ebXML Header Envelope contains a single ebXMLHeader document (see section 8). The 181
ebXML Payload Envelope can contain any electronic data that can be transported within 182
MIMEcontents of the ebXML Payload are determined by the user of the ebXML service. 183

Any special considerations for the usage of the ebXML Message Envelope in HTTP and SMTP 184
transports are described in Appendix C. 185

7.1.2MIME usage Conventions 186

Values associated with MIME header attributes are valid in both quoted and unquoted form. For 187
example, the forms type="ebxml" and type=ebxml are both valid. 188

7.2 ebXML Message Envelope 189
The MIME structured ebXML Message Envelope is used to identify the message as an ebXML 190
compliant structure and encapsulates the header and payload in MIME body parts. It MUST 191
conform to [RFC2045] and MUST contain a Content-Type MIME header.192

7.2.1 Content-Type 193

The MIME Content-Type MUST be set to multipart/related for all ebXML Message 194
Envelopes. For example:195
 196
Content-Type: multipart/related;197

The MIME Content-Type header contains three attributes: 198
• type199
• boundary200
• version201

7.2.1.1 type Attribute 202

The MIME type attribute is used to identify the ebXML Message Envelope as an ebXML 203
compliant structure. It conforms to a MIME XML Media Type [XMLMedia] and MUST be set to 204
"application/vnd.eb+xml". This media type is derived from the application/xml type 205
and shares many semantics with that type. To that type, application/vnd.eb+xml adds a 206
specific application context, the ebXML Message Service. For example: 207
 208
type="application/vnd.eb+xml"209

7.2.1.2 boundary Attribute 210

The MIME boundary attribute is used to identify the body part separator used to identify the start 211
and end points of each body part contained in the message. The MIME boundary SHOULD be 212
chosen carefully in order to ensure that it does not occur within the content area of a body part 213
see [RFC 2045] for guidance on how to do this. For example: 214
 215
boundary:="-------8760boundaryValueHere"216

7.2.1.3 version Attribute 217

The MIME version attribute indicates the version of the ebXML Message Service Specification 218
to which the ebXML Message Envelope conforms. All message headers SHOULD USE 219
"0.930.92". For example: 220
version="0.930.92"221

7.2.2 ebXML Message Envelope Example 222

An example of a compliant ebXML Message Envelope header appears as follows: 223
 224

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 16 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Content-Type: multipart/related; type="application/vnd.eb+xml";"boundary:="-------225
8760boundaryValue";226

7.3 ebXML Header Container 227

The ebXML Header Container is a MIME body part that MUST consist of: 228
• one ebXML Header Envelope, that contains 229
• one XML ebXML Header document (see section 8). 230

The following rules apply: 231
• the ebXML Header Container MUST be the first MIME body part in the ebXML Message. 232
• there MUST be one and only one ebXML Header Document in each ebXML Message. 233

Note that, an ebXML Payload Container may be a completely encapsulated ebXML Message. 234

The MIME based ebXML Header Envelope conforms to [RFC 2045] and MUST consist of the 235
following MIME headers: 236

• Content-ID237
• Content-Type238

7.3.1 Content-ID 239

The Content-ID MIME header identifies this instance of an ebXML Message header body part. 240
The value for Content-ID SHOULD be a unique identifier, in accordance with RFC 2045. For 241
example: 242
 243
Content-ID: <2000-0722-161201-123456789@ebxmlhost.realmexample.com>244

7.3.2 Content-Type 245

The MIME Content-Type for an ebXML header is identified with the value 246
“application/vnd.eb+xml". Content-Type contains two attributes: 247

• version 248
• charset 249

7.3.2.1 version Attribute 250

The MIME version attribute indicates the version of the ebXML Message Service Specification 251
to which the ebXML Header Envelope and ebXML Header Document conform. All message 252
headers MUST USE “0.930.92”. Future versions of this specification may require other values of 253
this attribute. However, the value specified here MUST match that specified in the version 254
attribute of the ebXML Header Document for all versions of this specification. For example: 255

 256
version="0.930.92";257

7.3.2.2 charset Attribute 258

The MIME charset attribute identifies the character set used to create the ebXML Header 259
Document. The semantics of this attribute are described in the “charset parameter / encoding 260
considerations” of application/xml as specified in [XML/Media]. The list of valid values can 261
be found at http://www.iana.org/. 262

http://www.iana.org/

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 17 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

If both are present, the MIME charset attribute SHALL be equivalent to the encoding 263
declaration of the ebXML Header Document (see section 8). If provided, the MIME charset 264
attribute MUST NOT contain a value conflicting with the encoding used when creating the ebXML 265
Header Document. For maximum interoperability it is RECOMMENDED that [UTF-8] be used 266
when encoding this document. Due to the processing rules defined for media types derived from 267
application/xml [XMLMedia], this MIME attribute has no default. For example: 268
 269
charset="UTF-8"270

7.3.3 ebXML Header Envelope Example 271

 The following represents an example of an ebXML Header Envelope and ebXML Header 272
Document: 273
 274
Content-ID: ebxmlheader-123@ebxmlhost.reexample.comalm --| MIME ebXML |275
Content-Type: application/vnd.eb+xml; | Header Envelope |276
version=”0.930.92”; charset=”UTF-8” --| | ebXML277

| Header278
<ebXMLHeader> -------------| | Container279
<Manifest>........ | XML ebXML Header |280
</Manifest> | Document |281
<Header>........ | |282
</Header> | |283
<Routing Header>........ | |284
</Routing Header> | |285

</ebXMLHeader> -------------| |286

A complete example of an ebXML Header Container is presented in Appendix B. That example 287
includes the charset attribute and portions of an XML Prolog (see sect 8.1), none neither of 288
which is required to appear in an ebXML Header Container or ebXML Header Document. 289
Appendix B also includes the outer ebXML Message Envelope and a complete (valid) 290
ebXMLHeader element rather than the outline shown above. 291

7.4 ebXML Payload Container 292

If the ebXML Message contains a payload, then a single ebXML Payload Container MUST be 293
used to envelop it. 294

If there is no payload within the ebXML Message then the ebXML Payload Container MUST not 295
be present. 296

The contents of the ebXML Payload Container MUST be identified by the Message Manifest 297
element within the ebXML Header Document (see section 8.3). 298

If the Message Manifest is an empty XML element, the ebXML Payload Container MUST NOT be 299
present in the ebXML Message. 300

If an ebXML Payload Container is present, it MUST conform to MIME [RFC2045] and MUST 301
consist of: 302

�a MIME header portion - the ebXML Payload Envelope, and 303
• a content portion - the payload itself that may be of any valid MIME type. 304

If an ebXML Payload Container is present, it MUST conform to MIME [RFC2045] and MUST 305
consist of a single payload MIME object that may be any valid MIME type including any of the 306
MIME mulitipart/* types. 307

The ebXML MIME Payload Envelope, MUST consist of the following MIME headers: 308
• Content-ID309
• Content-Type310

The ebXML Message Service Specification makes no provision, nor limits in any way the 311
structure or content of payloads. Payloads MAY be a simple-plain-text-object or complex nested 312

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 18 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

multipart objects. This is the implementer’s decisionPayloads MAY be a simple-plain-text –object 313
or complex nested multipart objects. The specification of the structure and composition of 314
payload objects is the prerogative of the organization that defines the business process or 315
information exchange that uses the ebXML Message Service. 316

7.4.1 Content-ID 317

The Content-ID MIME Header is used to uniquely identify an instance of an ebXML Message 318
payload body part. The value for Content-ID SHOULD be a unique identifier, in accordance 319
with MIME [RFC 2045]. For example: 320
 321
Content-ID: <2000-0722-161201-123456789@ebxmlhost.realmexample.com>322

7.4.2 Content-Type 323
The MIME Content-Type for an ebXML payload is determined by the implementer and is used 324
to identify the type of data contained in the content portion of the ebXML Payload Container. The 325
MIME Content-Type MUST conform to [RFC2045]. For exampleThe MIME Content-Type for an 326
ebXML Payload Container is used to specify the media type and subtype of data in the body of 327
the ebXML Payload Container. The value of this MIME parameter is determined by the 328
organization that defines the business process or information exchange. The value selected 329
SHOULD be chosen from the list of registered MIME media types found at: ftp://isi.edu/in-330
notes/iana/assignments/media-types/. The MIME Content-Type MUST conform to [RFC2045]. 331
For example: 332
 333
Content-Type: application/xml334

7.4.3 Example of an ebXML MIME Payload Container 335

The following represents an example of an ebXML MIME Payload Envelope and a payload: 336
Content-ID: ebxmlpayload-123@ebxmlhost.realmdomainname.example.com--- ----------|337
ebXML MIME |338
Content-Type: application/xml -------------| Payload Envelope | ebXML339

| Payload340
<Invoice> -------------| | Container341
<Invoicedata>........ | Payload |342
</Invoicedata> | |343

</Invoice> -------------| |344

A complete example of the ebXML Payload Container is presented in Appendix XX. 345

7.5 Additional MIME Parameters 346

Any MIME part described by this specification MAY contain additional MIME parameters in 347
conformance with the [MIMERFC2045] specification. Implementations MAY ignore any MIME 348
parameter not defined in this specification. Implementations MUST ignore any MIME parameter 349
that they do not recognize. 350

For example, an implementation could include content-length in a message. However, a 351
recipient of a message with content-length could ignore it. 352

 353

7.6 Reporting MIME Errors 354

If a MIME error is detected in the ebXML Header Envelope or the ebXML Payload Envelope then 355
it MUST be reported by sending an ebXML message containing an ebXMLHeader element with 356
an ErrorList element (see section 8.8) where errorCode is set to MimeProblem and a severity 357
set to Error. See section 11 for more details on how to indicate an error. 358

ftp://isi.edu/in-notes/iana/assignments/media-types/
ftp://isi.edu/in-notes/iana/assignments/media-types/

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 19 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8 ebXML Header Document 359

The ebXML Header Document is a single [XML] document with a number of principal header-360
elements. In general, separate principal-header elements are used where: 361

• different software components are likely to be used to generate that header-element, 362
• the element is not always present, 363
• the structure of the header element might vary independently of the other header-364

elements, or 365
• the data contained in the header-element MAY need to be digitally signed separately 366

from the other header-elements. 367

8.1 XML Prolog 368

The ebXML Header Document’s XML Prolog MAY contain an XML declaration or a document 369
type declaration. This specification has defined no additional comments or processing 370
instructions that may appear in the XML prolog. For example: 371
 372
<?xml version="1.0" encoding="UTF-8"?>373
<!DOCTYPE ebXMLHeader SYSTEM "level1-10122000.dtd">374
<ebXMLHeader>...</ebXMLHeader>375

8.1.1 XML Declaration 376

The XML declaration MAY be present in an ebXML Header Document. If present, it MUST 377
contain the version specification required by the XML Recommendation [XML]: version=’1.0’ and 378
MAY contain an encoding declaration and standalone document declaration. The semantics 379
described below MUST be implemented by a compliant ebXML Message Service. 380

8.1.2 Encoding Declaration 381

<DB>This section isn’t clear to me. I really could not work out what is or is not valid and what do 382
you do if you get an inconsistency between the XML prolog and the MIME header. e.g. do you 383
ignore it, assume a value or report an error.</DB> 384

If both <DB>the encoding declaration and the MIME charset?</DB> are present, the XML prolog 385
for the ebXML Header Document SHALL contain the encoding declaration that SHALL be 386
equivalent to the charset attribute of the MIME Content-Type of the ebXML Message Header 387
Container (see section 7.3). 388

If provided, the encoding declaration MUST NOT contain a value conflicting with the encoding 389
used when creating the ebXML Header Document. It is RECOMMENDED that UTF-8 be used 390
when encoding the ebXML Header Document. 391

If the character encoding cannot be determined by an XML processor using the rules specified in 392
section 4.3.3 of [XML], the XML declaration and its contained encoding declaration SHALL be 393
provided in the ebXML Header Document. 394

NOTE: The encoding declaration is not required in an XML document according to the XML 395
version 1.0 specification [XML]. 396

For example: 397
Content-Type:application/vnd.eb+eml; version “0.93”; charset=”UTF-8”398
<?xml version="1.0" encoding="UTF-8"?> 399

8.1.3 Standalone Document Declaration 400

The standalone document declaration, if present, MAY appear as standalone=’yes’ if and only if 401
all of the validity requirements specified in section 2.9 of the XML Recommendation [XML] are 402
met. It is RECOMMENDED that ebXML Header Documents omit this declaration. 403

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 20 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<DB>What do you do if the XML Recommendation is not met?</DB> 404

8.1.4 Document Type Declaration 405

When the ebXML Header Document will or may be processed by an XML processor not 406
compliant with the XML Schema Recommendation [XMLSchema], a document type declaration 407
containing a SYSTEM identifier of "level1-10122000.dtd" MUST be included. For example: 408
 409
<!DOCTYPE ebXMLHeader SYSTEM "level1-10122000.dtd">410
<DB>1. Do we need to mandate use of a DOCTYPE and then maybe remove it in a later version 411
of the spec when everyone is using XML Schema 412
2. Do we we need to be prescriptive about what goes in the Prolog depending on whether we 413
have a DTD or XSD.(Saikat)</DB> 414

8.2 ebXMLHeader Element 415

The root element of the ebXML Header Document is named the ebXMLHeader. Its structure is 416
described below. 417

8.2.1 ebXMLHeader attributes 418

There are two attributes defined for the ebXMLHeader element, they are as follows: 419
• Namespace (xmlns) 420
• Version 421

Additional namespace declarations and namespace-qualified attributes from foreign namespaces 422
MAY be added to support extensions to the ebXMLHeader document. 423

8.2.1.1 Namespace attribute 424

The namespace declaration (xmlns) (see [XML Namespace]) has a REQUIRED value of 425
"http://www.ebxml.org/namespaces/messageHeader". 426

8.2.1.2 version attribute 427

The required version attribute indicates the version of the ebXML Message Service Specification 428
to which the ebXML Header Document conforms. Its purpose is to provide for future versioning 429
capabilities. All ebXML Header Documents MUST USE “0.930.92”. Future versions of this 430
specification SHALL require other values of this attribute. However, the value specified here 431
MUST match that specified in the MIME version attribute of the ebXML Header Envelope for all 432
versions of this specification. 433

8.2.2 ebXMLHeader elements 434

An ebXML Header Document consists of the following principal header elements: 435
• Manifest – an element that points to any data present either in the ebXML Payload 436

Container or elsewhere, e.g. on the web 437
• Header – a REQUIRED element that contains routing information for the message 438

(To/From, etc.) as well as other context information about the message 439
• RoutingHeaderList – an element that contains entries that identifiesy the Message 440

Service Handler (MSH) that sent and should receive the message. This element can be 441
omitted. 442

• ApplicationHeaders – an element that can be used by a process or service to include 443
additional information that needs to be associated with the data in the ebXML Payload 444
but is not contained within itthat the MSH MUST make available to the application 445
processing the ebXML Payload Container 446

• StatusData – an element that is used by a MSH when responding to a request on the 447
status of a message that was previously received 448

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 21 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• ErrorList – an element that contains a list of the errors that have been found in a 449
messageare being reported against a previous message 450

• Acknowledgment – an element that is used by a MSH to indicate that a message has 451
been receivedreceiving MSH to acknowledge to the sending MSH that a previous 452
message has been received 453

• Signature – an element that contains a digital signature that conforms to [XMLDSIG] that 454
signs data associated with the message 455

• #wildcard - any namespace-qualified element content belonging to a foreign namespace 456

8.2.3 Combining Principal Header Elements 457

This section describes how the various principal header elements may be used in combination. 458

8.2.3.1 Manifest element 459

The Manifest element MUST be present if there is any data associated with the message that is 460
not present in the ebXML Header Document. This applies specifically to data in the ebXML 461
Payload Container or elsewhere, e.g. on the web. 462

8.2.3.2 Header element 463

The Header element MUST be present in every message. 464

8.2.3.3 RoutingHeaderList element 465

The RoutingHeaderList element MAY be present in any message. It MUST be present if the 466
message is being sent reliably (see section 10) or over multiple hops (see section 8.5.3). 467

8.2.3.4 ApplicationHeaders element 468

The ApplicationHeaders element MAY be present on any message except a message that 469
contains an ErrorList element with a highestSeverity attribute set to Error. 470

8.2.3.5 StatusData element 471

This element MUST NOT be present with the following elements: 472
• a Manifest element 473
• an ErrorList element with a highestSeverity attribute set to Error 474

8.2.3.6 ErrorList element 475

If the highestSeverity attribute on the ErrorList is set to Warning, then this element MAY be 476
present with any other element. 477

If the highestSeverity attribute on the ErrorList is set to Error, then this element MUST NOT be 478
present with the following: 479

• a Manifest element 480
• an ApplicationHeaders element 481
• a StatusData element 482

8.2.3.7 Acknowledgment element 483

An Acknowledgment element MAY be present on any message. 484

8.2.3.8 Signature element 485

A Signature element MAY be present on any message. 486

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 22 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.3.9 #wildcard element content 487

Any namespace-qualified element content MAY be added to provide for the extensibility of the 488
ebXMLHeader. Extension element content MUST be namespace-qualified in accordance with 489
[XMLNamespaces] and MUST belong to a foreign namespace. A foreign namespace is one that 490
is NOT http://www.ebxml.org/namespaces/messageHeader. 491

Any namespace-qualified element added SHOULD include the global mustUnderstand attribute. 492
If the mustUnderstand attribute is NOT present, the default value implied is ‘false’. If an 493
implementation of the MSH does not recognize the namespace of the element and the value of 494
the mustUnderstand attribute is ‘true’ then the MSH SHALL respond with a message that 495
includes an errorCode of NotSupported in an Error element as defined in section 8.8. If the 496
value of the mustUnderstand attribute is ‘false’ or if the mustUnderstand attribute is not present 497
then an implementation of the MSH MAY ignore the namespace-qualified element and its 498
content. 499

8.2.4 ebXMLHeader sample 500

The following is a sample ebXMLHeader document fragment demonstrating the overall structure: 501
 502
<?xml version="1.0" encoding="UTF-8"?>503
<ebXMLHeader xmlns=”http://www.ebxml.org/namespaces/messageHeader” Version="0.930.92" >504
<Manifest>...</Manifest>505
<Header>...</Header>506
<RoutingHeaderList>…</RoutingHeaderList>507
</ebXMLHeader>508

8.3 Manifest element 509

The Manifest element is a composite element consisting of one or more Reference elements. 510
Each Reference element identifies data associated with the message, whether included as part 511
of the message as payload document(s) contained in the ebXML Message Container, or remote 512
resources accessible via a URL. The Manifest element, if present, SHALL be the first child 513
element of the ebXMLHeader. The purpose of the Manifest is as follows: 514

• to make it easier to directly extract a particular document associated with this Message, 515
• to enable a MSH to check the integrity of a Message 516
• to allow an application to determine whether it can process the payload without having to 517

parse it. 518

The Manifest element MUST have a single attribute: id that is an XML ID. 519

8.3.1 Reference element 520

The Reference element is a composite element consisting of the following subordinate elements: 521
• Schema - information about the schema(s) that define the instance document identified 522

in the parent Reference element 523
• Description - a textual description of the payload object referenced by the parent 524

Reference element 525
• #wildcard - any namespace-qualified element content belonging to a foreign namespace 526

The Reference element itself is an [XLINK] simple link. XLINK is presently a Candidate 527
Recommendation (CR) of the W3C. It should be noted that the use of XLINK in this context is 528
chosen solely for the purpose of providing a concise vocabulary for describing an association. 529
Use of an XLINK processor or engine is NOT REQUIRED, but MAY prove useful in certain 530
implementations. 531

The Reference element has the following attribute content in addition to the element content 532
described above: 533

• id - a REQUIRED XML ID for the Reference element, 534

http://www.ebxml.org/namespaces/messageHeader
http://www.ebxml.org/namespaces/messageHeader

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 23 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• xlink:type - this attribute defines the element as being an XLINK simple link. It has a 535
fixed value of 'simple', 536

• xlink:href - this REQUIRED attribute has a value that is the URI of the payload object 537
referenced. It SHALL conform to the [XLINK] specification criteria for a simple link, 538

• xlink:role - this attribute identifies some resource that describes the payload object or its 539
purpose. If present, then it SHALL have a value that is a valid URI in accordance with the 540
[XLINK] specification, 541

• Any other namespace-qualified attribute MAY be present. A receiving MSH MAY choose 542
to ignore any foreign namespace attributes other than those defined above. 543

8.3.1.1 Schema element 544

If the item being referenced has schema(s) of some kind that describe it (e.g. an XML Schema, 545
DTD or a database schema), then the Schema element SHOULD be present as a child of the 546
Reference element. It provides a means of identifying the schema, and its version, that defines 547
the payload object identified by the parent Reference element. The Schema element contains the 548
following attributes: 549

• location - the REQUIRED URI of the schema 550
• version – a version identifier of the schema 551

8.3.1.2 Description element 552

The Reference element MAY contain zero or more Description elements. The Description is a 553
textual description of the payload object referenced by the parent Reference element. The 554
language of the description is defined by a REQUIRED xml:lang attribute. The xml:lang attribute 555
MUST comply with the rules for identifying languages specified in [XML]. This element is provided 556
to allow a human readable description of the payload object identified by the parent Reference 557
element. If multiple Description elements are present, each SHOULD have a unique xml:lang 558
attribute value. An example of a Description element follows. 559

<Description xml:lang=”en-gb”>Purchase Order for 100,000 widgets</Description>560

8.3.1.3 #wildcard element 561

Refer to section 8.2.3.9 for discussion of #wildcard element handling. 562

8.3.2 What References are Included in a Manifest 563

The designer of the protocol or applicationbusiness process or information exchange that is using 564
ebXML Messaging decides what payload data is referenced by the Manifest and the values to be 565
used for xlink:role. 566

8.3.3 Manifest Validation 567

If an xlink:href attribute contains a URI that is a content id (URI scheme "cid") then a MIME 568
part with that content-id MUST be present in the ebXML Payload Container of the message. 569
If it is not, then the error SHALL be reported to the From Party with an errorCode of 570
MimeProblem and a severity of Error. 571

If an xlink:href attribute contains a URI that is not a content id (URI scheme "cid") and that URI 572
cannot be resolved, then it is an implementation decision on whether to report the error. If the 573
error is to be reported, then it SHALL be reported to the From Party with an errorCode of 574
MimeProblem and a severity of Error. 575

8.3.4 Manifest sample 576

The following fragment demonstrates a typical Manifest for a message with a single payload 577
MIME body part: 578
 579

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 24 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<Manifest id="Manifest">580
<Reference id="pay01"581
xlink:href="cid:payload-1"582
xlink:role="http://regrep.org/gci/purchaseOrder">583
<Description>Purchase Order for 100,000 widgets</Description>584
<Schema location="http://regrep.org/gci/purchaseOrder/po.xsd"585
version="1.0"/>586

</Reference>587
</Manifest>588

8.4 Header element 589

The Header element immediately follows the Manifest element. It is REQUIRED in all 590
ebXMLHeader documents. The Header element is a composite element comprised of the 591
following subordinate elements: 592

• From 593
• To 594
• CPAId 595
• ConversationId 596
• Service 597
• Action 598
• MessageData 599
• QualityOfServiceInfo 600
• SequenceNumber 601
• Description 602
• #wildcard 603

The Header attribute MAY have an attribute: id that is of type XML ID. 604

8.4.1 From and To elements 605

The REQUIRED From element identifies the Party that originated the message. The REQUIRED 606
To element identifies Party that is the intended recipient of the message. Both To and From can 607
be logical identifiers such as a DUNS number or identifiers that also imply a physical location, 608
such as an email address. 609

The From and the To elements have a single child element, PartyId. 610

The PartyId element has a single attribute, type and content that is a string value. If the type 611
attribute is present, then it MUST be a URN. It indicates the domain of names to which the string, 612
in the content of the From or To element, belongs. 613

If the PartyId type attribute is not present, the content of the PartyId element MUST be an URI 614
[RFC 2396] otherwise report an error (see section 11) with errorCode set to Inconsistent and 615
severity set to error. It is strongly RECOMMENDED that the content be an URN. 616

The following fragment demonstrates usage of the From and To elements. The first illustrates a 617
user-defined numbering scheme, and the second a URN. 618
 619
<From>620
<PartyId type="urn:duns.com">1234567890123</PartyId>621

<From>622
<To>623
<PartyId>smtp:joe@example.com</PartyId>624

</To>625

8.4.2 CPAId element 626

The REQUIRED CPAId element is a string that identifies the Collaboration Protocol Agreement 627
(CPA) that governs the processing of the message. It MUST be an identifier that iThe identifier 628

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 25 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

MUST bes unique within the combination of the From and To Partiesdomain of the names chosen 629
by the Parties. 630

A Party that receives the message, must be able to resolve the CPAId to the CPA instance as 631
information in the CPA is used, for example, by Reliable Messaging (see section 10). It is 632
therefore RECOMMENDED that the CPAId is a URI. 633

<DB>The usage of CPAIds is not resolved. There are issues around using CPAs in the area of 634
multiple hops and requiring use of URIs (or URLs). </DB> 635

8.4.3 ConversationId element 636

The REQUIRED ConversationId element is a string that identifies the set of related messages 637
that make up a conversation between two Parties. The Party that initiates a conversation 638
determines the value of the ConversationId element that shall be reflected in all messages 639
pertaining to that conversation. 640

The ConversationId enables the recipient of a message to identify the instance of an application 641
or process that generated or handled earlier messages within a conversation. It remains constant 642
for all messages within a conversation. 643

The value used for a ConversationId is implementation dependent. 644

Note that implementations are free to choose how they will identify and store conversational state 645
related to a specific Conversation. Implementations SHOULD provide a facility for mapping 646
between their identification schema and a ConversationId generated by another implementation. 647
<DB>I think that this last sentence should be deleted as it requiring implementation behavior that 648
is an implementation decision.</DB> 649

8.4.4 Service element 650

The REQUIRED Service element identifies the service that acts on the message. It is specified 651
by the designer of the service. The designer of the service may be: 652

• a standards organization, or 653
• an individual or enterprise 654

Note that in the context of an ebXML Business Process model, a Service element identifies a 655
Business Transaction. <DB>This definition needs to go in the glossary</DB> 656

The Service element has a single type attribute. 657

8.4.4.1 type attribute 658

If the type attribute is present, then it indicates that the parties that are sending and receiving the 659
message know, by some other means, how to interpret the content of the Service element. The 660
two parties MAY use the value of the type attribute to assist in the interpretation. 661

If the type attribute is not present, the content of the Service element MUST be a URI [RFC 662
2396]. If it is not a URI then report an error with an errorCode of Inconsistent and a Severity of 663
Error (see section 11). 664

8.4.4.2 ebXML Message Service namespace 665

URIs in the Service element that start with the namespace: 666
http://www.ebxml.org/namespaces/messageService are reserved for use by this specification. 667

8.4.5 Action element 668

The REQUIRED Action element identifies a process within a Service that processes the 669
Message. Action SHALL be unique within the Service in which it is defined. 670

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 26 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.4.6 MessageData element 671

The REQUIRED MessageData element provides a means of uniquely identifying an ebXML 672
Message. It is contains the following three four elements: 673

• MessageId 674
• Timestamp 675
• RefToMessageId 676
• TimeToLive 677

8.4.6.1 MessageId element 678

The REQUIRED element MessageId is a unique identifier for the message conforming to 679
[RFC2392]. The "local part" of the identifier as defined in [RFC2392] is implementation 680
dependent. 681

8.4.6.2 Timestamp element 682

The Timestamp is a value representing the time that the message header was created 683
conforming to [ISO-8601]. The format of CCYYMMDDTHHMMSS.SSSZ is REQUIRED to be 684
used. This time format is Coordinated Universal Time (UTC). 685

<DB>Should we make this compliant with an XML Schema timeInstant instead? </DB> 686

8.4.6.3 RefToMessageId element 687

The RefToMessageId element has a cardinality of zero or one. When present, it MUST contain 688
the MessageId value of an earlier ebXML Message to which this message relates. If there is no 689
earlier related message, the element MUST NOT be present. 690

For Error messages, the RefToMessageId element is REQUIRED and its value MUST be the 691
MessageId value of the message in error (as defined in section 8.8). 692

For Acknowledgment Messages, the RefToMessageId element is REQUIRED, and its value 693
MUST be the MessageId value of the ebXML Message being acknowledged. See also sections 694
8.2.3.7 and 10. 695

8.4.6.4 TimeToLive element 696

The TimeToLive element indicates the time by which a message should be delivered to and 697
processed by the To Party. 698

In this context, the TimeToLive has expired if the time of t he internal clock of the MSH that 699
receives a message is greater than the value of TimeToLive for the message. 700

When setting a value for TimeToLive it is RECOMMENDED that the From Party takes into 701
account the accuracy of its own internal clocks as well as the MSH TimeAccuracy parameter for 702
the Receiving MSH (see section 10.6.5.3) that indicates the accuracy to which a MSH will keep 703
its internal clocks. How a MSH ensures that its internal clocks are kept sufficiently accurate is an 704
implementation decision. 705

If the TO Party’s MSH receives a message where TimeToLive has expired, it SHALL send a 706
message to the From party MSH, reporting that the TimeToLive of the message has expired. 707
This message SHALL be comprised of: 708

• A Payload that consists of the ebXML message that expired; 709

• An ErrorList containing an Error that has the errorCode attribute set to 710
TimeToLiveExpired, and the severity attribute set to Error. 711

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 27 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.4.7 QualityOfServiceInfo element 712

The QualityOfServiceInfo element identifies the quality of service with which the message is 713
delivered. This element has four four attributes: 714

• deliverySemantics 715
• messageOrderSemantics 716
• deliveryReceiptRequested 717
• syncReplyMode, and 718
�timeToLive. 719

The QualityOfServiceInfo element is MAY be present if any of the attributes within the element 720
need to be set to their non-default value. 721

8.4.7.1 deliverySemantics attribute 722

The deliverySemantics attribute, if present, over-rides the value of the same parameter in the 723
CPA. If it is not present, the value in the CPA MUST be used. 724

The deliverySemantics parameter/element MUST be used by the From Party MSH to indicate 725
whether the Message must be sent reliably. Valid Values are: 726

• OnceAndOnlyOnce. The message must be sent using a reliableMessagingMethod 727
that will result in the application or other process at the To Party receiving the message 728
once and only once 729

• BestEffort The reliable delivery semantics are not specifiedused. In this case the value 730
of reliableMessagingMethod is ignored. 731

The default value for deliverySemantics is specified in the CPA. If no value is specified in the 732
CPA then the default value is BestEffort. 733

If deliverySemantics is set to OnceAndOnlyOnce then the From Party MSH and the To Party 734
MSH must adopt the Reliable Messaging behavior (see section 10) that describes how messages 735
are resent in the case of failure and duplicates are ignored. 736

If deliverySemantics is set to BestEffort then a MSH that received a message that it is unable 737
to deliver MUST NOT take any action to recover or otherwise notify anyone of the problem, and 738
the MSH that sent the message must not attempt to recover from any failure. 739

This means that duplicate messages might be delivered to an application and persistent storage 740
of messages is not required. 741

If the To Party is unable to support the type of Delivery Semantics requested, then the To Party 742
SHOULD report the error to the From Party using an ErrorCode of NotSupported and a 743
Severity of Error. 744
 745

<QualityOfServiceInfo deliverySemantics=”OnceAndOnlyOnce”/> 746

8.4.7.1 messageOrderSemantics attribute 747

The messageOrderSemantics attribute, if present, over-rides the value of the same parameter 748
in the CPA. If it is not present, the value in the CPA MUST be used. 749

The messageOrderSemantics parameter/attribute MUST be used by the From Party MSH to 750
indicate whether the Message is passed to the receiving application in the order which the 751
sending application specified. Valid Values are: 752

• Guaranteed. The messages are passed to the receiving application in the order which 753
the sending application specified. 754

• NotGuaranteed The messages may be passed to the receiving application in different 755
order from the order which sending application specified. 756

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 28 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The default value for messageOrderSemantics is specified in the CPA. If no value is specified in 757
the CPA then the default value is NotGuaranteed. 758

If messageOrderSemantics is set to Guaranteed then the To Party MSH MUST correct invalid 759
order of messages using the value of SequenceNumber in the conversation specified the 760
ConversationId. The Guaranteed semantics can be set only when deliverySemantics is 761
OnceAndOnlyOnce. If deliverySemantics is not OnceAndOnlyOnce then report the error to 762
the From Party with an errorCode of Inconsistent and a severity of Error (see section Error! 763
Reference source not found. 10). 764

If deliverySemantics is set to NotGuaranteed, then the To Party MSH does not need to correct 765
invalid order of messages. If the To Party is unable to support the type of 766
MessageOrderSemantics requested, then the To Party MUST report the error to the From Party 767
using an ErrorCode of NotSupported and a Severity of Error. A sample of 768
messageOrderSemantics follows. 769
 770
<QualityOfServiceInfo deliverySemantics=”OnceAndOnlyOnce” messageOrderSemantics=”Guaranteed”/>771

8.4.7.2 DeliveryReceiptRequested attribute 772

The deliveryReceiptRequested attribute, if present, over-rides the value of the same parameter 773
in the CPA. If not present then the value in the CPA MUST be used. 774

The deliveryReceiptRequested parameter/element MUST be used by a From Party MSH to 775
indicate whether a message received by the To Party MSH should result in the To Party MSH 776
returning an acknowledgment message containing an Acknowledgment element with a type of 777
deliveryReceipt. 778

The deliveryReceiptRequested parameter/element is frequently used to help implement 779
Reliable Messaging (see section 10) although it can be used independently. 780

Before setting the value of deliveryReceiptRequested, the From Party SHOULD check the 781
deliveryReceiptSupported parameter for the To Party in the CPA to make sure that its value is 782
compatible. 783

Valid values for deliveryReceiptRequested are: 784

• Unsigned - requests that an unsigned Delivery Receipt is requested 785

• Signed - requests that a signed Delivery Receipt is requested, or 786

• None - indicates that no Delivery Receipt is requested. 787

When a To Party MSH receives a message with deliveryReceiptRequested not set to None 788
then it should check if it is able to support the type of Delivery Receipt requested. 789

If the To Party MSH can produce the Delivery Receipt of the type requested, then it MUST return 790
to the From Party on the message just received, a message containing an Acknowledgment 791
element with the value of the type attribute set to DeliveryReceipt. 792

If the To Party cannot return a Delivery Receipt of the type requested then it MUST report the 793
error to the From Party using an ErrorCode of NotSupported and a Severity of Error. 794

8.4.7.3 syncReplyMode attribute 795

The syncReplyMode is an optional attribute that indicates whether a response to a message 796
must be returned at the same time as any acknowledgments. It has two values: 797

• True which indicates that the MSH that receives the message MUST get the message 798
processed by the application or other process that needs to process it before the MSH 799
sends any response to the original message, or 800

• False which indicates that an acknowledgment to the message MAY be sent separately 801
before processing of the message by the application or other process. 802

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 29 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The default value is False. 803

8.4.7.4TimeToLive attribute 804

The TimeToLive is an optional attribute in the header that conforms to [ISO8601] and indicates 805
the time by which a message should be delivered to the To Party Message Service Handler. 806

When setting a value for TimeToLive it is RECOMMENDED that the From Party takes into 807
account the accuracy of its own internal clocks as well as the mshTimeAccuracy parameter for 808
the Receiver MSH (see section 10.6.5.3) that indicates the accuracy to which a MSH will keep its 809
internal clocks. 810

How a MSH ensures that its internal clocks are kept sufficiently accurate is an implementation 811
decision. 812

If a MSH receives a Message where TimeToLive has expired the MSH MUST: 813
�send a Message to the From Party MSH, reporting that the TimeToLive of the message 814

has passed 815
�NOT forward the message to another MSH or application/other system that should receive 816

the message. 817

The message reporting the error MUST contain an ErrorCode set to TimeToLiveExpired, and a 818
severity attribute set to Error 819

In this context the TimeToLive has expired if the time of the internal clock of the MSH that 820
receives a message is greater than the value of TimeToLive for the Message. 821

If TimeToLive is not present then it MUST be assumed that TimeToLive is infinite and therefore 822
checks for message expiry are unnecessary. 823

8.4.8 SequenceNumber element 824

The SequenceNumber is an element that indicates the sequence in which messages must be 825
processed by a To Party receiving MSH. The SequenceNumber is unique within the 826
ConversationId and From Party MSH. It is set to zero on the first message from that MSH for a 827
Conversation and then incremented by one for each subsequent message sent. The 828
SequenceNumber element MUST appear only when deliverySemantics is OnceAndOnlyOnce 829
and messageOrderSemantics is Guaranteed. If it does not, then there is an error that must be 830
reported to the From Party MSH with an errorCode of Inconsistent and a severity of Error. 831

A To Party MSH that receives a message with a SequenceNumber set MUST NOT pass the 832
message to an application as long as the storage required to save out-of-sequence messages is 833
within the implementation defined limits and until all the messages with lower 834
SequenceNumbers have been received and passed to the application. 835

If the implementation defined limit for saved out-of-sequence messages is reached, then the To 836
Party MSH MUST indicate a delivery failure to the From Party MSH with errorCode set to 837
DeliveryFailure and severity set to Error (see section Error! Reference source not found. 11). 838

The SequenceNumber element is an integer value that is incremented (e.g. 0, 1, 2, 3, 4...) for 839
each From Party application-prepared message sent to the To Party application in the 840
ConversationId. The next value of 99999999 in the increment is “0”. The Sequence Number 841
consists of ASCII numerals in the range 0-99999999. In following cases, the Sequence Number 842
takes the value “0”: 843

1) First message from the within the Conversation 844

2) First message after resetting Sequence Number information by the Ffrom Party MSH 845

3) First message after wraparound (next value after 99999999) 846

The SequenceNumber element has a single attribute, Status. This attribute is an enumeration, 847
which SHALL have one of the following values: 848

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 30 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• Reset – the Sequence Number is reset as shown in 1 or 2 above 849
• Continue – the Sequence Number continues sequentially (including 3 above) 850

When the Sequence Number is set to “0” because of 1 or 2 above, the Status attribute of the 851
messages MUST be set to “Reset”. In all other cases, including 3 above, the Status attribute 852
MUST be set to “Continue”.Before the From Party resets the SequenceNumber of a 853
Conversation, the Sender MUST wait for receiving of all the Acknowledgement Messages for 854
Messages previously sent for the Conversation. Only when all the sent Messages are 855
acknowledged, can the From Party reset the SequenceNumber. An example of a Sequence 856
Number follows. 857
 858
<SequenceNumber Status=”Reset”>0</SequenceNumber>859

8.4.9 Description element 860

The Description element is present zero or more times as a child element of the Header. Its 861
purpose is to provide a human readable description of the purpose or intent of the message. The 862
language of the description is defined by a required xml:lang attribute. The xml:lang attribute 863
MUST comply with the rules for identifying languages specified in [XML]. Each occurrence 864
SHOULD have a different value for xml:lang. 865

8.4.10 #wildcard element 866

In support of allowing an ebXML Message to be extended to include element content from a 867
foreign namespace, a #wildcard element has been provided. Additional element content MAY be 868
added to the Header element immediately following the MessageData element. Such additional 869
element content MUST be namespace-qualified in accordance with [XMLNamespaces]. 870

Refer to section 8.2.3.9 for discussion of #wildcard element handling. 871

8.4.11 Header sample 872

The following fragment demonstrates the structure of the Header element of the ebXMLHeader 873
document: 874
 875
<Header id="N01">876
<From>…</>example.com</From>877
<To type="userType">...</To>878
<CPAId>http://www.ebxml.org/cpa/123456</CPAId>879
<ConversationId>987654321</ConversationId>880
<Service type="myservicetypes">QuoteToCollect</Service>881
<Action>NewPurchaseOrder</Action>882
<MessageData>883
<MessageId>UUID-2</MessageId>884
<Timestamp>20000725T121905.000Z</Timestamp>885
<RefToMessageId>UUID-1</RefToMessageId>886

</MessageData>887
888

<QualityOfServiceInfo889
deliverySemantics=”OnceAndOnlyOnce”890
deliveryReceiptRequested=”Signed”/>891

<QualityOfServiceInfo deliverySemantics="BestEffort"/>892
</Header>893

8.5 RoutingHeaderList element 894

A RoutingHeaderList element consists of one or more RoutingHeader elements. Exactly one 895
RoutingHeader is appended to the RoutingHeaderList, following any pre-existing 896
RoutingHeader before transmission of a message over a data communication protocol. 897

The RoutingHeaderList element MAY be omitted from the header if: 898
• the message is being sent over a single hop (see section 8.5.2), and 899
• the message is not being sent reliably (see section 10) 900

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 31 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.5.1 Routing Header Element 901

The RoutingHeader element contains information about a single transmission of a message 902
between two Parties. If a message traverses multiple hops by passing through some type of 903
intermediate system between the From Party and the To Party, then each transmission over 904
eachone or more intermediate MSH modes as it travels between the From party MSH and the To 905
Party MSH, then each transmission over each successive “hop” results in the addition of a new 906
Routing Header element. 907

The RoutingHeader element is a composite element comprised of the following subordinate 908
elements: 909

• SenderURI 910
• ReceiverURI 911
• ErrorURI 912
• Timestamp 913
• SequenceNumber 914
• #wildcard 915

The RoutingHeader element MAY contain either or both of the following attributes: 916
• reliableMessagingMethod 917
• intermediateAckRequested 918

8.5.1.1 reliableMessagingMethod attribute 919

The reliableMessagingMethod attribute is an enumeration that SHALL have one of the following 920
values: 921

• ebXML 922

• Transport 923

The default implied value for this attribute is “ebXML”. Refer to section 10.1.2 for discussion of 924
the use of this attribute. 925

8.5.1.2 intermediateAckRequested attribute 926

The intermediateAckRequested attribute is an enumeration that SHALL have one of the 927
following values: 928

• Signed 929

• UnSigned 930

• None 931

The default implied value for this attribute is “None”. Refer to section 10.1.2 for discussion of the 932
use of this attribute. 933
 934
[These attributes are added to support the prototype Reliable Messaging content in this 935
specification—see note at beginning of section 10] 936

8.5.1.18.5.1.3 SenderURI element 937

This element contains the URI of the message's Sender Messaging Service Handler. The 938
recipient of the message, unless there is another URI more specifically identified within the CPA, 939
uses the URI to send a message, when required that: 940

• responds to an earlier message 941
• acknowledges an earlier message 942

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 32 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• reports an error in an earlier message. 943

8.5.1.28.5.1.4 ReceiverURI element 944

This element contains the URI of the Receiver’s Messaging Service Handler URI. It is the URI to 945
which the Sender sends the message. 946

8.5.1.38.5.1.5 ErrorURI element 947

This URI, if present, identifies the URI that is used for reporting errors. If it is not present then 948
errors are reported by sending a message to the SenderURI. 949

8.5.1.48.5.1.6 Timestamp element 950

The Timestamp element is the time the individual RoutingHeader was created. It is in the same 951
format as in the Timestamp element in the MessageData element. 952

8.5.1.58.5.1.7 SequenceNumber element 953

The SequenceNumber is an optional element that indicates the sequence in which messages 954
must be processed by a receiving MSH. The SequenceNumber is unique within the 955
ConversationId and Sender MSH. It is set to one on the first message from that MSH for a 956
Conversation and then incremented by one for each subsequent message sent. 957

Preservation of message sequence MUST be used with deliverySemantics of 958
OnceAndOnlyOnce otherwise there is an error. 959

A MSH that receives a message with a SequenceNumber set MUST NOT pass the message to 960
an application as long as the storage required to save out-of-sequence messages is within the 961
implementation defined limits and until all the messages with lower SequenceNumbers have 962
been received and passed to the application. 963

If the implementation defined limit for saved out-of-sequence messages is reached, then the 964
Receiving MSH MUST indicate a delivery failure to the Sending MSH with errorCode set to 965
DeliveryFailure and severity set to Error (see section 10.5). 966

8.5.1.68.5.1.8 #wildcard element 967

Refer to section 8.2.3.9 for discussion of #wildcard element handling. 968

8.5.1.7reliableMessagingMethod attribute 969

The reliableMessagingMethod attribute is an enumeration that SHALL have one of the following 970
values: 971

�ebXML 972

�Transport 973

The default implied value for this attribute is “ebXML”. Refer to section 10.1.2 for discussion of 974
the use of this attribute. 975

8.5.1.8intermediateAckRequested attribute 976

The intermediateAckRequested attribute is an enumeration that SHALL have one of the 977
following values: 978

�Signed 979

�UnSigned 980

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 33 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

�None 981

The default implied value for this attribute is “None”. Refer to section 10.1.2 for discussion of the 982
use of this attribute. 983

8.5.2 Single Hop Routing Header Sample 984

A single hop message and its return is illustrated by the diagram below. 985

Party B

MSH

Application

Party A

MSH
Message X

Message Y

Application

1

2 986

Figure 8-1 Single Hop Message 987

The content of the corresponding messages could include: 988
• Transmission 1 - Message X From Party A To Party B 989

 990
<Header id=”...”>991
<From>urn:myscheme.com:id:PartyA-id</From>992
<To>urn:myscheme.com:id:PartyB-id</To>993
<ConversationId>219cdj89dj2398djfjn</ConversationId>994
...995
<MessageData>996
<MessageId>29dmridj103kvna</MessageId>997
...998

</MessageData>999
...1000

</Header>1001
<RoutingHeaderList id=”...”>1002
<RoutingHeader>1003
<SenderURI>url:PartyA.com/PartyAMsh</SenderURI>1004
<ReceiverURI>url:PartyB.com/PartyBMsh</ReceiverURI>1005
<Timestamp>20001216T21:19:35.145Z-8</Timestamp>1006

</RoutingHeader>1007
</RoutingHeaderList>1008

�Transmission 2 - Message Y From Party B To Party A 1009
<Header id=”...”>1010
<From>urn:myscheme.com:id:PartyB-id</From>1011
<To>urn:myscheme.com:id:PartyA-id</To>1012
<ConversationId>219cdj89dj2398djfjn</ConversationId>1013
...1014
<MessageData>1015
<MessageId>eis99dk4mvzlghasi</MessageId>1016
<RefToMessageId>29dmridj103kvna</RefToMessageId>1017
...1018

</MessageData>1019
...1020

</Header>1021
<RoutingHeaderList id=”...”>1022
<RoutingHeader>1023
<SenderURI>url:PartyA.com/PartyAMsh</SenderURI>1024
<ReceiverURI>url:PartyB.com/PartyBMsh</ReceiverURI>1025
<Timestamp>20001216T21:20:05.274Z-6</Timestamp>1026

</RoutingHeader>1027
</RoutingHeaderList>1028

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 34 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.5.3 Multi-hop Routing Header Sample 1029

Multi-hop messages are not sent directly from one party to another, instead they are sent via an 1030
intermediate party. This is illustrated by the diagram below. 1031

Party C

MSH

Application

Party A

MSH
Message X

Application

Party B

MSH

Routing
Application

MSH
Message Y

Message X

Message Y

1 2

34 1032

Figure 8-2 Multi-hop Message 1033

The content of the corresponding messages could include: 1034
• Transmission 1 - Message X From Party A To Party B 1035

<Header id=”...”>1036
<From>urn:myscheme.com:id:PartyA-id</From>1037
<To>urn:myscheme.com:id:PartyC-id</From>1038
<ConversationId>219cdj89dj2398djfjn</ConversationId>1039
...1040
<MessageData>1041
<MessageId>29dmridj103kvna</MessageId>1042
...1043

</MessageData>1044
...1045

</Header>1046
<RoutingHeaderList id=”...”>1047
<RoutingHeader>1048
<SenderURI>url:PartyA.com/PartyAMsh</SenderURI>1049
<ReceiverURI>url:PartyB.com/PartyBMsh</ReceiverURI>1050
<Timestamp>20001216T21:19:35.145Z-8</Timestamp>1051

</RoutingHeader>1052
</RoutingHeaderList>1053

• Transmission 2 - Message X From Party B To Party C 1054
<Header id=”...”>1055
<From>urn:myscheme.com:id:PartyA-id</From>1056
<To>urn:myscheme.com:id:PartyC-id</From>1057
<ConversationId>219cdj89dj2398djfjn</ConversationId>1058
...1059
<MessageData>1060
<MessageId>29dmridj103kvna</MessageId>1061
...1062

</MessageData>1063
...1064

</Header>1065
<RoutingHeaderList id=”...”>1066
<RoutingHeader>1067
<SenderURI>url:PartyA.com/PartyAMsh</SenderURI>1068
<ReceiverURI>url:PartyB.com/PartyBMsh</ReceiverURI>1069
<Timestamp>20001216T21:19:35.145Z-8</Timestamp>1070

</RoutingHeader>1071
<RoutingHeader>1072
<SenderURI>url:PartyB.com/PartyAMsh</SenderURI>1073
<ReceiverURI>url:PartyC.com/PartyBMsh</ReceiverURI>1074
<Timestamp>20001216T21:19:45.483Z-6</Timestamp>1075

</RoutingHeader>1076
</RoutingHeaderList>1077

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 35 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Message Y would be similar to Message X except that the direction of transmission is reversed. 1078

8.6 ApplicationHeaders Element 1079

The ApplicationHeaders element supports the extension of an ebXML Message through the 1080
inclusion of additional XML elements that belong to a foreign namespace, as child elements of 1081
the ApplicationHeaders element. 1082

Any additional element content MUST be namespace-qualified in accordance with 1083
[XMLNamespaces]. 1084

An MSH implementation MUST make the information content of the ApplicationHeaders 1085
element available to the application or application services layer of software. How this is done is 1086
an implementation decision but conformance to the ebXML Service Interface specification (to be 1087
defined) is recommendedRECOMMENDED. 1088

The ApplicationHeaders element has a single attribute called mustUnderstand. This attribute 1089
has two possible values true and false. The default value for the mustUnderstand attribute is 1090
false. 1091

An ApplicationHeaders element that has a mustUnderstand set to a value of true means that a 1092
receiving MSH MUST be capable of understanding the meaning of the namespace-qualified 1093
element content. If the content is not understood, the receiving MSH MUST respond with a 1094
message that includes an errorCode of NotSupported in an Error element as defined in section 1095
8.8. 1096

8.6.1 ApplicationHeaders sample 1097

<ApplicationHeaders mustUnderstand="true">1098
<foo:ProprietaryStuff1099
xmlns:foo="http://www.example.com/ebxml-msh-extensions">…1100

</foo:ProprietaryStuff>1101
</ApplicationHeaders>1102

8.7 StatusData Element 1103

The StatusData element is used by one MSH to respond to a request on the status of the 1104
processing of a message that was previously sent (see also section 9.1). 1105

The StatusData element consists of the following elements and attributes: 1106
• a RefToMessageId element that contains the MessageId of the message whose status 1107

is being reported 1108
• a Timestamp element. This contains the time that the message, whose status is being 1109

reported, was received. This MUST be omitted if the message whose status is being 1110
reported is NotRecognized or the request was UnAuthorized 1111

• a ForwardURI element. This MUST only be present if messageStatus is set to 1112
Forwarded. If present it indicates the URI of the ReceiverURI to which the message was 1113
forwarded 1114

• a messageStatus attribute that is set to one of the following values: 1115
- UnAuthorized – the Message Status Request is not authorized or accepted 1116
- NotRecognized – the message identified by the RefToMessageId element in the 1117

StatusData element is not recognized 1118
- Received – the message identified by the RefToMessageId element in the 1119

StatusData element has been received by the MSH, but has not been processed by 1120
an application or forwarded to another MSH 1121

- Processed – the message identified by the RefToMessageId element in the 1122
StatusData element has been received by the MSH for the To Party on the original 1123
message, and has been passed to the application or other process that is to handle it 1124

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 36 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

- Forwarded – the message identified by the RefToMessageId element in the 1125
StatusData element has been received by the MSH, and has been forwarded to 1126
another MSH 1127

8.8 ErrorList Element 1128

The existence of an ErrorList element indicates that the message that is identified by the 1129
RefToMessageId in the header has an error. 1130

The ErrorList element consists of one or more Error elements and the following two attributes: 1131
• id attribute 1132
• highestSeverity attribute 1133

If there are no errors to be reported then the ErrorList element MUST NOT be present. 1134

8.8.1 id attribute 1135

The id attribute uniquely identifies the ErrorList element within the document. 1136

8.8.2 highestSeverity attribute 1137

The highestSeverity attribute contains the highest severity of any of the Error elements. 1138
Specifically, if any of the Error elements has a severity of Error then highestSeverity must be 1139
set to Error otherwise set highestSeverity to Warning. 1140

8.8.3 Error element 1141

An Error element consists of the following attributes: 1142
• codeContext 1143
• errorCode 1144
• severity 1145
• location 1146
• xml:lang 1147
• errorMessage 1148
• softwareDetails 1149

8.8.3.1 codeContext attribute 1150

The REQUIRED codeContext attribute identifies the namespace or scheme for the errorCodes. 1151
It MUST be a URI. Its default value is http://www.ebxml.org/messageServiceErrors. If it is 1152
does not have the default value then it indicates that an implementation of this specification has 1153
used its own errorCodes. 1154

Use of non ebXML values for errorCodes is NOT RECOMMENDED. In addition, an 1155
implementation of this specification MUST NOT use its own errorCodes if an existing errorCode 1156
as defined in section 8.8.5 has the same or very similar meaning. 1157

8.8.3.2 errorCode attribute 1158

The required errorCode attribute indicates the nature of the error in the message in error. Valid 1159
values for the errorCode and a description of the code’s meaning are given in section 8.8.5. 1160

8.8.3.3 severity attribute 1161

The required severity attribute indicates the severity of the error. Valid values are: 1162
• Warning - This indicates that although there is an error, other messages in the 1163

conversation will still be generated in the normal way. 1164

http://www/ebxml.org/messageServiceErrors

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 37 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• Error - This indicates that there is an unrecoverable error in the message and no further 1165
messages will be generated as part of the conversation. 1166

8.8.3.4 location attribute 1167

The location attribute points to the part of the message that is in error. 1168

If an error exists in the ebXML Header document and the document is “well formed” (see [XML]), 1169
then the content of the location attribute MUST be an [XPointer]. 1170

If the ebXML Header document is not “well formed” then the location attribute MUST be omitted. 1171

If the error is associated with the MIME envelope that wraps the ebXML Header Document and 1172
the ebXML Payload, then location id contains the content-id of the MIME part that is in error, in 1173
the format cid:23912480wsr, where the text after the”:” is the value of the MIME part’s content-1174
id. 1175

The location attribute MUST NOT be used to point to errors inside the ebXML Payload Container 1176
as the method of reporting errors in the ebXML Payload Container is application dependent. 1177

8.8.3.5 errorMessage attribute 1178

The errorMessage attribute provides a narrative description of the error in the language defined 1179
by the xml:lang attribute. Typically, it will be the message generated by the XML parser or other 1180
software that is validating the message. This means that the value of the attribute is defined by 1181
the vendor/developer of the software, that generated the Error element. 1182

The xml:lang must comply with the rules for identifying languages specified in [XML]. 1183

The errorMessage attribute MAY be omitted. 1184

<DB>Do we want to allow multiple errorMessage elements in different languages, e.g. so that if 1185
you send a message to Switzerland you could send it in French, German and Italian?</DB> 1186

8.8.3.6 softwareDetails attribute 1187

The softwareDetails attribute contains a value that is set by the vendor/developer of the software 1188
that generated the Error element. It SHOULD contain data that enables the vendor/developer as 1189
well as the recipient of the message to identify the precise location in their software and the set of 1190
circumstances that caused the software to generate a message reporting the error. It is 1191
RECOMMENDED that this element include plain text separated by punctuation to identify: 1192

• the name of the software vendor; 1193
• the name, version and release number of the software that generated the ebXML Error 1194

Document 1195
• the part of the software that caused the error to be generated that can be used by the 1196

Software Vendor to identify the circumstances that caused the error 1197

If any part of the softwareDetails attribute contains text that is readable by a human, then it 1198
SHOULD be in the language identified by xml:lang. 1199

8.8.4 Examples 1200

An example of an ErrorList element is given below. 1201
 1202
<ErrorList id=’3490sdo9’, highestSeverity=”error”>1203
<Error errorCode=’UnableToParse’, severity=”Error”, location=cid:21398adhiwqe, xml:lang=”us-1204

en”, errorMessage=’XSD parser error – document not parsable”, softwareDetails=’Software1205
Development Corp.; ebXML Connector!!; v2.7, build 2.7313; Ref HA’/>1206
<Error />1207

</ErrorList>1208

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 38 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.8.5 errorCode values 1209

This section describes the ErrorCodes (see section 8.8.3.2) that are used in a message 1210
reporting an error. They are described in a table with three headings: 1211

• the first column contains the value to be used as an errorCode, e.g. UnableToParse 1212
• the second column contains a "Short Description" of the errorCode. Note that this 1213

narrative MUST NOT be used in the errorMessage attribute. 1214
• the third columns contains a "Long Description" that provides an explanation of the 1215

meaning of the error and provides guidance on when the particular ErrorCode should be 1216
used. 1217

It is RECOMMENDED that implementers of software that conforms to this specification make 1218
available to a user that is being informed of the error: the value of the errorCode, the “Short 1219
Description” and optionally the “Long Description”. 1220

It is also RECOMMENDED that the “Short Description” and the “Long Description” are translated 1221
into the preferred language of the user if this is known. 1222

8.8.6 Reporting Errors in the ebXML Header Document 1223

The following list contains error codes that can be associated with the ebXML Header Document: 1224
 1225

Error Code Short Description Long Description
UnableToParse XML not well formed

or invalid.
The XML document is not well formed or not
valid and cannot be successfully parsed. See
[XML] for the meaning of "well formed" and "not
valid".

ValueNotRecognized Element content or
attribute value not
recognized.

Although the document is well formed and valid,
the element/attribute contains a value that could
not recognized and therefore could not be used
by the ebXML Message Service

NotSupported Element or attribute
not supported

Although the document is well formed and valid,
an element or attribute is present that:
• is consistent with the rules and constraints

contained in this specification, but
• is not supported by the ebXML Message

Service that is processing the message.
Inconsistent Element content or

attribute value
inconsistent with
other elements or
attributes.

Although the document is well formed and valid,
according to the rules and constraints contained
in this specification the content of an element or
attribute is inconsistent with the content of other
elements or their attributes.

OtherXml Other error in an
element content or
attribute value.

Although the document is well formed and valid,
the element content or attribute value contains
values that do not conform to the rules and
constraints contained in this specification and is
not covered by other error codes. The
errorMessage attribute should be used to
indicate the nature of the problem.

8.8.7 Non-XML Document Errors 1226

The following are error codes that identify errors that are not associated with the ebXML Header 1227
Document: 1228

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 39 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Error Code Short Description Long Description
MessageTooLarge Message too large The message is too large to be processed by

the ebXML Message Service.
MimeProblem A MIME error has

occurred
An error has been detected in the structure or
format of a MIME part of the message. For
example:
• Missing MIME Part. Although the MIME

message is correctly structured, a MIME part
is missing that should have been present if
the rules and constraints contained in this
specification are followed

• Unexpected MIME Part. Unexpected MIME
part. Although the MIME message is
correctly structured, a MIME part is present
that is not expected in the particular context
according to the rules and constraints
contained in this specification

DeliveryFailure Message Delivery
Failure

A message has been received that either
probably or definitely could not be sent to its
next destination. Note that if severity is set to
Warning then there is a small probability that
the message was delivered.

TimeToLiveExpired Message Time To
Live Expired

A message has been received that arrived after
the time specified in the TimeToLive element of
the Header element

SecurityFailure Message Security
Checks Failed

Validation of signatures or checks on the
authenticity or authority of the sender of the
message have failed.

Unknown Unknown Error Indicates that an error has occurred that is not
covered explicitly by any of the other errors.
The errorMessage attribute should be used to
indicate the nature of the problem.

8.9 Acknowledgment Element 1229

The Acknowledgment element is an optional element that is used by one Message Service 1230
Handler to indicate that another Message Service Handler has received a message. 1231

For clarity two terms are defined: 1232
• message being acknowledged. This is the Message that is has been received by a MSH 1233

that is now being acknowledged 1234
• acknowledgment message. This is the message that acknowledges that the message 1235

being acknowledged has been received. 1236

The message being acknowledged is identified by the RefToMessageId contained in the 1237
MessageData element contained within the Header Element of the acknowledgment message 1238
containing the value of the MessageId of the message being acknowledged. 1239

The Acknowledgment element consists of the following: 1240
• a Timestamp element 1241
• a From element 1242
• a type attribute 1243
• a signed attribute 1244

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 40 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.9.1 Timestamp element 1245

The Timestamp element is a value representing the time that the message being acknowledged 1246
was received by the Party generating the acknowledgment message. It must conform to [ISO-1247
8601]. <DB>Do we make this conform to XML Schema timeInstant</DB> 1248

8.9.2 From element 1249

This is the same element as the From element within Header element (see section 8.4.1). 1250
However, when used in the context of an Acknowledgment Element, it contains the identifier of 1251
the Party that is generating the acknowledgment message. 1252

If the From element is omitted then the Party that is sending the element is identified by the From 1253
element in the Header element. 1254

8.9.3 type attribute 1255

The type attribute indicates who sent the acknowledgment message. It MUST contain either: 1256
• DeliveryReceipt - indicates that the acknowledgment message was generated by the To 1257

Party identified by the To element of the message being acknowledged, or 1258
• IntermediateAck - indicates that the acknowledgment message was generated by a 1259

Party that is not the To Party identified by the To element of the message being 1260
acknowledged. Typically this will be a Party that has received the message and is 1261
forwarding it to either the To Party or another Party with the intention that the message is 1262
sent to the To Party. 1263

The default value for type is DeliveryReceipt. 1264

8.9.4 signed attribute 1265

The signed attribute indicates whether the acknowledgment message is digitally signed. It MUST 1266
contain either: 1267

• True - indicates that the acknowledgment message is digitally signed, or 1268
• False - indicates that the acknowledgment message is not digitally signed 1269

The default value for signed is False. 1270

See section 12 for details on what should be signed and how a signature that signs an 1271
acknowledgment message should be checked. 1272

8.10 Signature Element 1273

TBDAn ebXML Message may be digitally signed to provide security countermeasures. Zero or 1274
more Signature elements, belonging to the [XMLDSIG] defined namespace MAY be present in an 1275
ebXMLHeader. The Signature element MUST be namespace qualified in accordance with 1276
[XMLDSIG]. The structure and content of the Signature element MUST conform to the 1277
[XMLDSIG] specification. If there are more than one Signature elements contained within the 1278
ebXMLHeader, the first MUST represent the digital signature of the ebXML Message as signed 1279
by the From Party MSH in conformance with section 12. Additional Signature elements MAY be 1280
present, but their purpose is undefined by this specification. 1281

Refer to section 12 for a detailed discussion on how to construct the Signature element when 1282
digitally signing an ebXML Message. 1283

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 41 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

9 Message Service Handler Services 1284

[The Message Service Handler Services section has not been agreed to by the 1285
membership of the TRP Project Team; however, it is being included to provide a basis for 1286
POC developers of MSH implementations. Implementers MUST be prepared for some 1287
change to the content of this section.] 1288

The Message Service Handler MUST support two services that are designed to help provide 1289
smooth operation of a Message Handling Service implementation: 1290

• Message Status Request 1291
• Message Service Handler Ping 1292

Each service is described below: 1293

9.1 Message Status Request Service 1294

The Message Status Request Service consists of the following: 1295
• sending a Message Status Request message to a Message Service Handler (MSH) 1296

about a message previously sent 1297
• the Message Service Handler that receives the request sending a Message Status 1298

Response message in return. 1299

9.1.1 Message Status Request Message 1300

A Message Status Request message consists of no ebXML Payload and the following elements 1301
in the ebXML Header: 1302

• A Header element 1303
• A RoutingHeaderList element 1304
• A Signature element 1305

The RoutingHeaderList and the Signature elements MAY be omitted (see sections 8.5 and 1306
8.10). 1307

The Header element MUST contain the following: 1308
• a From element that identifies the party that created the message status request 1309

message 1310
• a To element that identifies a Party that should receive the message. If a RoutingHeader 1311

was present on the message whose status is being checked then this MUST be the 1312
ReceiverURI from that message. 1313

• a Service element that contains: 1314
http://www.ebxml.org/namespaces/messageService/MessageStatus 1315

• an Action element that contains Request 1316

The message is then sent to the To Party. 1317

9.1.2 Message Status Response Message 1318

Once the To Party on the Message Status Request message receives the message, they MAY 1319
generate a Message Status Response message that consists of no ebXML Payload and the 1320
following elements in the ebXML Header. 1321

• a Header element 1322
• a RoutingHeaderList element 1323
• an Acknowledgment element 1324
• a StatusData element 1325
• a Signature element 1326

http://www/ebxml.org/namespaces/messageServiceServices/MSH

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 42 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The RoutingHeaderList, Acknowledgment and Signature elements MAY be omitted (see 1327
sections 8.5, 8.9 and 8.10). 1328

The Header element MUST contain the following: 1329
• a From element that identifies the creator of the Message Status Response message 1330
• a To element that is set to the value of the From element in the Message Status Request 1331

message 1332
• a Service element that contains: 1333

http://www.ebxml.org/namespaces/messageService/MessageStatus 1334
• an Action element that contains Response 1335
• a RefToMessageId that identifies the Message Status Request message. 1336

The message is then sent to the To Party. 1337

9.1.3 Security Considerations 1338

Party’s that receive a Message Status Request message SHOULD always respond to the 1339
message. However they MAY ignore the message instead of responding with messageStatus 1340
set to UnAuthorized if they consider that the sender of the message received is unauthorized. 1341
The decision process that results in this course of action is implementation dependent. 1342

<DB> Do we want to allow the Message Status Response to include the original response to the 1343
message in the Payload?</DB><CF> quite possibly.</CF> 1344

9.2 Message Service Handler Ping Service 1345

The Message Service Handler Ping Service enables one Message Service Handler to determine 1346
if another MSH is operating. It consists of: 1347

• sending a Message Service Handler Ping message to a MSH, and 1348
• the MSH that receives the Ping responding with a Message Service Handler Pong 1349

message. 1350

9.2.1 Message Service Handler Ping Message 1351

A Message Service Handler Ping (MSH Ping) message consists of no ebXML Payload and the 1352
following elements in the ebXML Header: 1353

• A Header element 1354
• A RoutingHeaderList element 1355
• A Signature element 1356

The RoutingHeaderList and the Signature elements MAY be omitted (see sections 8.5 and 1357
8.10). 1358

The Header element MUST contain the following: 1359
• a From element that identifies the creator of the MSH Ping message 1360
• a To element that identifies the operator of the MSH that is being sent the MSH Ping 1361

message 1362
• a Service element that contains: 1363

http://www.ebxml.org/namespaces/messageService/MSHStatus 1364
• an Action element that contains Ping 1365

The message is then sent to the To Party. 1366

9.2.2 Message Service Handler Pong Message 1367

Once the To Party on the MSH Ping message receives the message, they MAY generate a 1368
Message Service Handler Pong (MSH Pong) message that consists of no ebXML Payload and 1369
the following elements in the ebXML Header. 1370

http://www/ebxml.org/namespaces/messageServiceServices/MSH
http://www/ebxml.org/namespaces/messageServiceServices/MSH

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 43 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• a Header element 1371
• a RoutingHeaderList element 1372
• an Acknowledgment element 1373
• a Signature element 1374

The RoutingHeaderList, Acknowledgment and Signature elements MAY be omitted (see 1375
sections 8.5, 8.9 and 8.10). 1376

The Header element MUST contain the following: 1377
• a From element that identifies the creator of the MSH Pong message 1378
• a To element that identifies a Party that generated the MSH Ping message 1379
• a Service element that contains: 1380

http://www.ebxml.org/namespaces/messageService/MessageStatus 1381
• an Action element that contains Pong 1382
• a RefToMessageId that identifies the MSH Ping message. 1383

The message is then sent to the To Party. 1384

9.2.3 Security Considerations 1385

Party’s that receive a MSH Ping message SHOULD always respond to the message. However 1386
there is a risk that some Parties might use the MSH Ping message to determine the existence of 1387
a Message Service Handler as part of a security attack on that MSH. Therefore recipients of a 1388
MSH Ping MAY ignore the message if they consider that the sender of the message received is 1389
unauthorized or part of some attack. The decision process that results in this course of action is 1390
implementation dependent. 1391

http://www/ebxml.org/namespaces/messageServiceServices/MSH

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 44 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

10 Reliable Messaging 1392

[The Reliable Messaging section has not been agreed to by the membership of the TRP 1393
Project Team; however, it is being included to provide a basis for POC developers of MSH 1394
implementations. Implementers MUST be prepared for some change to the content of this 1395
section.] 1396

Reliable Messaging defines an interoperable protocol such that the two Messaging Service 1397
Handlers (MSH) operated by a From Party and a To Party can “reliably” exchange messages that 1398
are sent using “reliable messaging” semantics. 1399

“Reliably” means that the From Party can be highly certain that the message sent will be 1400
delivered to the To Party. If there is a problem in sending a message then the sender resends the 1401
message until either the message is delivered, or the sender gives up. If the message cannot be 1402
delivered, for example because there has been a catastrophic failure of the To Party’s system, 1403
then the From Party is informed. 1404

10.1.1 Persistent Storage and System Failure 1405

A MSH that supports Reliable Messaging MUST keep messages that are sent or received reliably 1406
in persistent storage. In this context persistent storage is a method of storing data that does not 1407
lose information after a system failure or interruption. 1408

This specification recognizes that different degrees of resilience may be realized depending on 1409
the technology that is used to persist the data. However, as a minimum, persistent storage that 1410
has the resilience characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly 1411
RECOMMENDED though that implementers of this specification use technology that is resilient to 1412
the failure of any single hardware or software component. 1413

Even after a system interruption or failure, a MSH MUST ensure that messages in persistent 1414
storage are processed in the same way as if the system failure or interruption had not occurred. 1415
How this is done is an implementation decision. 1416

10.1.2 Methods of Implementing Reliable Messaging 1417

Support for Reliable Messaging can be implemented in one of the following two ways: 1418
• using the ebXML Reliable Messaging protocol, or 1419
• using ebXML Header and Message structures together with commercial software 1420

products that are designed to provide reliable delivery of messages using alternative 1421
protocols.<DB>Change elsewhere</DB> 1422

Each of these are described below. 1423

10.2 ebXML Reliable Messaging Protocol 1424

The ebXML Reliable Messaging Protocol described in this section MUST be followed if the 1425
deliverySemantics parameter/element is set to OnceAndOnlyOnce and the 1426
ReliableMessagingMethod parameter/element is set to ebXML (the default). 1427

The ebXML Reliable Messaging Protocol is illustrated by the figure below. 1428

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 45 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

To Party

MSH

Application

From Party

MSH
1. Message

2. Message

Application
Message

being
Acknowledged

Acknowledgement
Message

 1429

Figure 10-1 Indicating that a message has been received 1430

The diagram above illustrates two terms that are used in the remainder of this section: 1431
• message being acknowledged. This is the Message that needs to be sent reliably and 1432

therefore needs to be acknowledged 1433
• acknowledgment message. This is the message that acknowledges that the message 1434

being acknowledged has been received. 1435

The receipt of the acknowledgment message indicates that the message being acknowledged 1436
has been sent reliably. 1437

An acknowledgment message MUST contain a MessageData element with a RefToMessageId 1438
that contains the same value as the MessageId element in the message being acknowledged. 1439

A Message can be sent reliably either over: 1440
• a Single-hop i.e. the sending of a message directly from the From Party’s MSH to the To 1441

Party’s MSH without passing through any intermediate MSHs. 1442
• Multi-hops i.e. the sending of a message indirectly from the From Party’s MSH to the To 1443

Party’s MSH via one or more intermediate MSHs. 1444

Single-hop Reliable Messaging is described first followed by Multi-hop Reliable Messaging. Note 1445
that Multi-hop Reliable Messaging is an extension of Single-hop reliable Messaging. 1446

10.2.1 Single-hop Reliable Messaging 1447

This section describes the REQUIRED behavior of a Message Service Handler (MSH) that is 1448
sending and/or receiving messages that support the ebXML Reliable Messaging Protocol. 1449

10.2.1.1 Sending Message Behavior 1450

If a MSH is given data by an application that needs to be sent reliably then the MSH MUST do the 1451
following: 1452

4)1) Create a message from components received from the application that includes: 1453

a) deliverySemantics set to OnceAndOnlyOnce, and 1454

b) a RoutingHeader element that identifies the sender and the receiver URIs 1455

5)2) Save the message in persistent storage (see section 10.1.1) 1456

6)3) Send the message (the message being acknowledged) to the Receiver MSH 1457

7)4) Wait for the Receiver MSH to return an acknowledgment message and, if it does not, then 1458
resend the identical message as described in section 10.2.1.3 1459

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 46 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

It is RECOMMENDED that messages that are sent reliably include deliveryReceiptRequested 1460
set to Signed or UnSigned. 1461

If the message does not need to be sent reliably, then deliverySemantics MUST be set to 1462
BestEffort (the default). 1463

10.2.1.2 Receiving Message Behavior 1464

If deliverySemantics on the received message is set to OnceAndOnlyOnce then do the 1465
following: 1466

1) Check to see if the message is a duplicate (e.g. there is a message in persistent storage that 1467
was received earlier that contains the same value for the MessageId) 1468

2) If the message is not a duplicate then do the following: 1469

a) Save the MessageId of the received message in persistent storage. As an 1470
implementation decision, the whole message MAY be stored if there are other reasons 1471
for doing so.<DB>Need to re-look at how duplicates are detected if sequence numbers 1472
are used. </DB> 1473

b) If the received message contains a RefToMessageId element then do the following: 1474

i) Look for a message in persistent storage that has a MessageId that is the same as 1475
the value of RefToMessageId on the received Message 1476

ii) If a message is found in persistent storage then mark the persisted message as 1477
delivered 1478

c) If deliveryReceiptRequested is set to Signed or UnSigned then create an 1479
Acknowledgment element with type set to DeliveryReceipt that identifies the received 1480
message 1481

d) If syncReplyMode is set to True then pass the data in the received message to the 1482
application or other process that needs to process it and wait for the application to 1483
produce a response. 1484

e) If deliveryReceiptRequested is set to Signed or UnSigned, or syncReplyMode is set 1485
to True then do the following: 1486

i) Create a RoutingHeader element that identifies the sender and the receiver URIs 1487

ii) Set the RefToMessageId to the value of the MessageId in the received message 1488

iii) Create a message from the response generated by the application (if any), the 1489
Acknowledgment element (if any) and the RoutingHeader that includes 1490
deliverySemantics set to OnceAndOnlyOnce 1491

iv) Save the message in persistent storage for later resending 1492

v) Send the message back to the Sending MSH 1493

f) If syncReplyMode is set to False then pass the data in the received message to the 1494
application or other process that needs to process it. Note that, depending on the 1495
application, this can result in the application generating another message to be sent (see 1496
previous section). 1497

3) If the message is a duplicate, then do the following: 1498

a) Look in persistent storage for a response to the received message (i.e. it contains a 1499
RefToMessageId that matches the MessageId of the received message) that was most 1500
recently sent to the MSH that sent the received message (i.e. it has a RoutingHeader 1501
element with the greatest value of the Timestamp) 1502

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 47 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

b) If no message was found in persistent storage then ignore the received message as 1503
either no message was generated in response to the message, or the processing of the 1504
earlier message is not yet complete 1505

c) If a message was found in persistent storage then resend the persisted message back to 1506
the MSH that sent the received message. 1507

10.2.1.3 Resending Lost Messages and Duplicate Filtering 1508

This section describes the behavior that is required by the sender and receiver of a message in 1509
order to handle when messages are lost. A message is "lost" when a sending MSH does not 1510
receive a response to a message. For example, it is possible that a message being 1511
acknowledged was lost, for example: 1512

!
Msg. Lost

Party B

MSH

Application

Party A

MSH
Message X

Application
Message

being
Acknowledged

1

 1513

Figure 10-2 Lost “Message Being Acknowledged” 1514

It is also possible that the Acknowledgment Message was lost, for example ... 1515

!
Msg. Lost

Party B

MSH

Application

Party A

MSH
Message X

Application

Message Y

1

2

Acknowledgement
Message

 1516

Figure 10-3 Lost Acknowledgment Message 1517

The rules that apply are as follows: 1518

1) The Sending MSH MUST resend the original message if an Acknowledgment Message has 1519
not been received from the Receiving MSH and either of the following are true: 1520

a) The message has not yet been resent and at least the time specified in the timeout 1521
parameter has passed since the first message was sent, or 1522

b) The message has been resent, and the following are both true: 1523

i) At least the time specified in the retryInterval has passed since the last time the 1524
message was resent, and 1525

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 48 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

ii) The message has been resent less than the number of times specified in the retries 1526
Parameter 1527

2) If the Sending MSH does not receive an Acknowledgment Message after the maximum 1528
number of retries, the Sending MSH SHOULD notify the application and/or system 1529
administrator function. 1530

3) If the Sending MSH detects a communications protocol error that is unrecoverable at the 1531
transport protocol level then the Sending MSH SHOULD first attempt to resend the message 1532
using the same transport protocol until the number of retries has been reached, and then 1533
again, using a different communications protocol, if the CPA allows this. If these are not 1534
successful, then notify the From Party of the failure to deliver as described in section 10.5. 1535

Party BParty A
MSH MSHMessage X

Message Y!
Msg. Lost

Message X

Message X

Message Y

!
Msg. Lost

Timeout !!

Timeout !!

Ignore
Duplicate

Application Application
1

2

3

4

5

 1536

Figure 10-4 Resending Lost Messages 1537

The diagram above shows the behavior that MUST be followed by the sender of the message 1538
being acknowledged (e.g. Message X) and the acknowledgment message (e.g. Message Y). 1539
Specifically: 1540

1) The sender of the message being acknowledged (e.g. Party A) MUST re-send the identical 1541
message to the To Party MSH (e.g. Party B) if no Acknowledgment Message is received 1542

2) The recipient of the message being acknowledged (e.g. Party B), when it receives a duplicate 1543
message, MUST re-send to the sender of the message being acknowledged (e.g. Party A), a 1544
message identical to the most recent message that was sent to the recipient (i.e. Party A) 1545

3) The recipient of the message being acknowledged (e.g. Party A) MUST ignore duplicate 1546
messages and not forward them a second time to the application, the next MSH <DB>next 1547
MSH is multi-hop, should not be here. </DB>or other process that ultimately needs to receive 1548
them. 1549

<DB>The above also includes recipient behavior which is not part of sending behavior. Should be 1550
in a separate section. </DB> 1551

In this context: 1552
• an identical message is a message that contains, apart from perhaps an additional 1553

RoutingHeader element, the same ebXML Header and ebXML Payload as the earlier 1554
message that was sent. 1555

• a duplicate message is a message that contains the same MessageId as an earlier 1556
message that was received. 1557

• the most recent message is the message with the latest Timestamp in the MessageData 1558
element that has the same RefToMessageId as the duplicate message that has just 1559
been received.<DB>Chris Ferris, disagrees with resending the latest message. DB & CF 1560
need to go through this. </DB> 1561

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 49 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Note that the Communication Protocol Envelope MAY be different. This means that the same 1562
message MAY be sent using different communication protocols and the reliable messaging 1563
behavior described in this section will still apply. The ability to use alternative communication 1564
protocols is specified in the CPA. 1565

10.2.2 Multi-hop Reliable Messaging 1566

Multi-hop reliable Messaging can occur either: 1567
• without Intermediate Acknowledgment, or 1568
• with Intermediate Acknowledgments 1569

One reason for using Multi-hop Reliable Messaging with Intermediate Acknowledgments is when 1570
the From Party that is sending a message is confident that the total time taken for ... 1571

• the message being acknowledged to be sent to the To Party, and 1572
• the acknowledgment message to be returned 1573

... is likely to result in the From Party resending the message being acknowledged. <DB>Chris 1574
thinks this is superfluous, David thinks it useful as it explains why you should do multi-hop and 1575
helps an implementer decide when to use it. This requires further discussion. </DB> 1576

Each of these is described below. 1577

10.2.2.1 Multi-hop Reliable Messaging without Intermediate Acknowledgments 1578

Multi-hop Reliable Messaging without Intermediate Acknowledgment is identified by the 1579
IntermediateAckRequested of the Routing Header for the hop being set to False (the default). 1580

The overall message flow is illustrated by the diagram below. 1581

Party A

MSH
Message X

Application

Party B

MSH

Routing
Application

MSH
Message Y

Message X

Message Y

1 2

56

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH
Message X

Message Y

3

4

Message
being

Acknowledged

Acknowledgement
Message

 1582

Figure 10-5 Multi-hop Reliable Messaging without Intermediate Acknowledgments 1583

This is essentially the same as Single-hop Reliable Messaging except that the Message passes 1584
through multiple intermediate parties. This means that: 1585

• the From Party (e.g. Party A) and the To Party (e.g. Party D) are the only parties that 1586
adopt the Reliable Messaging behavior described in this section 1587

• the intermediate parties (e.g. Parties B and C), just forward the messages they receive, 1588
they do not undertake any Reliable Messaging behavior. 1589

This is described in more detail below: 1590

1) The From Party and the To Party adopt the sending message and receiving message 1591
behavior described in sections 10.2.1.1 and 10.2.1.2 except that the From Party MSH (e.g. 1592
Party A) sends to an Intermediate Party (e.g. Party B) a message (the message being 1593
acknowledged) e.g. Message X in transmission 1, that contains 1594

a) a QualityOfServiceInfo element with deliverySemantics set to OnceAndOnlyOnce 1595

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 50 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

b) a RoutingHeader element that contains the SenderURI of the sender (e.g. the URL for 1596
Party A’s MSH) and the ReceiverURI of the next recipient of the message (e.g. the URL 1597
of Party B’s MSH) 1598

2) Once the Intermediate Party (e.g. Party B or Party C) receives the message, they determine 1599
its next destination (in the example above this could be done by the Routing Application) and 1600
forward the message (e.g. Transmission 2 of Message X) to the next Party (e.g. either Party 1601
C or Party D). Before sending the message they do the following: 1602

a) transfer elements in the ebXML Header and Payload unchanged from the inbound 1603
message to the outbound message except that, they 1604

b) add a RoutingHeader element to the RoutingHeaderList that contains the SenderURI 1605
of the next party to receive the message (e.g. the URL for Party C’s or Party D’s MSH) 1606
and the ReceiverURI (e.g. the URL for Party B’s or Party C’s MSH) 1607

3) If the Sending MSH (either at the From Party or at an Intermediate Party) does not receive an 1608
Acknowledgment Message after the maximum number of retries, the Sending MSH SHOULD 1609
notify the following of the delivery failure: 1610

a) The application and/or system administrator function if the Sending MSH is the From 1611
Party MSH, or 1612

b) The Sending MSH of the From Party, if the Sending MSH is operated by an Intermediate 1613
Party (see section 10.5) 1614

4) The previous step then repeats until eventually the message (e.g. Message X) reaches its 1615
final destination at the To Party (e.g. Party D) 1616

5) Once the To Party receives the message (i.e. the message being acknowledged) they return 1617
an acknowledgment message to the From Party through the Intermediate Parties.) 1618

6) Steps 2 and 3 above then repeat until the acknowledgment message reaches the To Party 1619
(e.g. Party A) 1620

10.2.2.2 Multi-hop Reliable Messaging with Intermediate Acknowledgments 1621

Multi-hop Reliable Messaging with Intermediate Acknowledgments is similar to Multi-hop Reliable 1622
Messaging without Intermediate Acknowledgment except that any of the Parties that are 1623
transmitting a Message can request that the recipient return an Intermediate Acknowledgment. 1624

This is illustrated by the diagram below. 1625

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message Y

Message X

Message Y
(Delivery Receipt)

1 2

6

8

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X

Message Y
(Delivery Receipt)

4

5

Message
being

Acknowledged

Acknowledgement
Message

Message T
(IntermediateAck)

Message U
(Intermediate Ack)

3

7 1626
Figure 10-6 Multi-hop Reliable Messaging with Intermediate Acknowledgments 1627

The main difference between Multi-Hop Reliable Messaging with Intermediate Acknowledgments 1628
and the without is: 1629

• any party may request an intermediate acknowledgment 1630

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 51 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• any party that either sends or receives a message that requests an intermediate 1631
acknowledgment must adopt the reliable messaging behavior even if the 1632
QualityOfServiceInfo element indicates otherwise. 1633

The rules that apply to Multi-hop Reliable Messaging with Intermediate Acknowledgment are as 1634
follows: 1635

1) Any Party that is sending a message can request that the recipient send an Acknowledgment 1636
Message that is an Intermediate Acknowledgment by setting the 1637
IntermediateAckRequested of the RoutingHeader for the hop to Signed or Unsigned. 1638
(e.g. Transmission 2 of Message X, or Transmission 6 of Message Y) 1639

2) If a MSH that is not the To Party receives a message that requires an Intermediate 1640
Acknowledgment (e.g. Transmission 2 of Message X, or Transmission 6 of Message Y) then: 1641

a) If the MSH can identify itself as the ReceiverURI in the RoutingHeader for the hop, and 1642
an Intermediate Acknowledgment is requested, then the MSH must return an 1643
Acknowledgment Message (e.g. Transmission 3 of Message T, or Transmission 7 of 1644
Message U) with: 1645

i) The Service and Action elements set as in defined in section 10.4 1646

ii) The From element contains the ReceiverURI from the last RoutingHeader in the 1647
message that has just been received 1648

iii) The To element contains the SenderURI from the last RoutingHeader in the 1649
message that has just been received 1650

iv) a RefToMessageId element that contains the MessageId of the message being 1651
acknowledged 1652

v) a QualityOfServiceInfo element with deliverySemantics set to 1653
OnceAndOnlyOnce 1654

vi) an Acknowledgment element with type set to IntermediateAck 1655

vii) a RoutingHeader element that contains the SenderURI of the sender (e.g. the URL 1656
for Party C’s or Party B’s MSH) and the ReceiverURI of the next recipient of the 1657
message (e.g. the URL of Party B’s or Party C’s MSH) 1658

3) If a MSH that is the To Party receives a message and it requires an Intermediate 1659
Acknowledgment (see step 2) then, unless the To Party is returning an Acknowledgment 1660
Message that is a Delivery Receipt, return an Acknowledgment Message as described in step 1661
2c above. 1662

10.3 ebXML Reliable Messaging using Queuing Transports 1663

This section describes the differences that apply if a Queuing Transport is used to implement 1664
Reliable Messaging. 1665

Use of the ebXML Reliable Messaging Protocol is identified by the ReliableMessagingMethod 1666
parameter being set to Transport for transmission (either a Single-hop or a Multi-hop) 1667

If Reliable Messaging using a Queuing Transport is being used then the following rules apply: 1668

1) An Intermediate Ack SHOULD not be requested. If an Intermediate Ack is requested, then it 1669
is ignored. 1670

2) No message acknowledgments with an Acknowledgment element with a type of 1671
IntermediateAck should be sent, even if requested 1672

3) Implementations should use the facilities of the Queuing Transport to determine if the 1673
message was delivered 1674

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 52 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

4) If an intermediate MSH cannot forward a message to the next Party then the From Party 1675
should be notified using the procedure described in section 10.5. 1676

5) An acknowledgment message with an Acknowledgment element with a type attribute set to 1677
deliveryReceipt can be sent if requested to inform the sender of the message being 1678
acknowledged that the message was delivered. 1679

10.4 Service and Action Element Values 1680

An Acknowledgment element can be included in an ebXMLHeader that is part of a message 1681
that is being sent as a result of processing of an earlier message. In this case the values for the 1682
Service and Action elements are set by the designer of the Service (see section 8.4.4). 1683

An Acknowledgment element also can be included in an ebXMLHeader that does not include 1684
any results from the processing of an earlier message. In this case, the values of the Service and 1685
Action elements MUST be set as follows: 1686

• The Service element MUST be set to: 1687
http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment 1688

• The Action element MUST be set to the value of the type attribute in the 1689
Acknowledgment element. 1690

Note that deliveryReceiptRequested must be set to None on a message that is only an 1691
acknowledgment. 1692

10.5 Failed Message Delivery 1693

It is possible, that a Message cannot be delivered to its ultimate destination. This can be either: 1694
• when the To Party MSH cannot deliver the message to the Application or other process 1695

that needs it, or 1696
• when using Intermediate Acknowledgments and an Intermediate system determines that 1697

a message may have been lost. This is illustrated by the diagram below. 1698

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message X1 3

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X5

6

Message
being

Acknowledged

Acknowledgement
Message

Message T
(IntermediateAck)

4Message T
(IntermediateAck)

2 !
Msg. Lost

Message Y
(Delivery Receipt)

 1699

Figure 10-7 Failed Message Delivery using Intermediate Acknowledgments 1700

In this example, Party B does not know if Party C (or Party D) has received the message since, 1701
even after resending, it has not received the acknowledgment message (Message T). 1702

In both these circumstances the MSH that detects the problem MUST send a message to the 1703
From Party that sent the message being acknowledged (via the Intermediate Party if required). 1704
The message contains: 1705

• a From Party that identifies the Party that detected the problem 1706
• a To Party that identifies the From Party that created the message that could not be 1707

delivered 1708
• a Service element and Action element set as described in 11.5 1709

http://www.ebxml.org/namespaces/messageService/MessageAcknowledgement

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 53 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• a QualityOfServiceInfo element with deliverySemantics set to the same value as the 1710
deliverySemantics on the message that could not be delivered 1711

• an Error element with a severity of: 1712
- Error if the Party that detected the problem could not even transmit the message 1713

(e.g. Transmission 3 was impossible) 1714
- Warning if the message (e.g. Message X in Transmission 3) was transmitted, but no 1715

acknowledgment was received. This means that the message probably was not 1716
delivered although there is a small probability that it was 1717

• an ErrorCode of DeliveryFailure 1718

This is illustrated by the diagram below by the text and arrows in red. 1719

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message X1 3

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X5

6

Message
being

Acknowledged

Acknowledgement
Message

Message T
(IntermediateAck)

4Message T
(IntermediateAck) 2 !

Msg. Lost

Message Y
(Delivery Receipt)

Timeout !!
Delivery
Failed !!

Message U
(Error=DeliveryFailed)

Message V
(IntermediateAck)

7

8
 1720

Figure 10-8 Reporting Failed Message Delivery 1721

Note that the message that contains an Error element with an ErrorCode of DeliveryFailure 1722
(e.g. Message U in Transmission 7) might be sent reliably. It is possible the acknowledgment 1723
message for this message (e.g. Message V in Transmission 8) is not received. In this case, the 1724
Party that detects the failed delivery (e.g. Party B) SHOULD inform the Party (e.g. Party A) that 1725
sent the message being acknowledged (e.g. Message X in Transmission 1) of the failure. How 1726
this is done is outside the scope of this specification. 1727

10.6 Reliable Messaging Parameters 1728

This section describes the parameters required to control reliable messaging. This parameter 1729
information may be contained: 1730

• in the ebXML Message header, or 1731

• in the CPA associated with the message. 1732

If the information is in both the ebXML message header and the CPA, the information in the 1733
header over-rides the CPA. 1734

10.6.1 Who sets Message Service Parameters 1735

The values to be used in parameters can be specified by the following parties: 1736
• the From Party 1737
• the To Party 1738
• the sending Message Service Handler (MSH) 1739
• the receiving Message Service Handler 1740

Parameters set by the From Party or the To Party, apply to the delivery of a message as a whole. 1741
Parameters set by the sending or receiving MSH apply to a single-hop. 1742

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 54 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Note that the From Party is the sending MSH and the To Party is the receiving MSH for the 1743
first/last MSH that handles the message. 1744

The table below indicates where these parameters may be set. 1745
 1746

Specified By

Parameter

CPA/
CPP

Message
Header

Routing
Header

From Party deliverySemantics Yes Yes N/A
From Party deliveryReceiptRequested Yes Yes N/A
From Party syncReplyMode Yes Yes N/A
From Party timeToLive Yes Yes N/A
To Party deliveryReceiptProvided Yes No No
Sending MSH reliableMessagingMethod No N/A Yes
Sending MSH intermediateAckRequested No N/A Yes
Sending MSH timeout Yes No No
Sending MSH retries Yes No No
Sending MSH retryInterval Yes No No
Receiving MSH reliableMessagingSupported Yes No No
Receiving MSH intermediateAckSupported Yes No No
Receiving MSH persistDuration Yes No No
Receiving MSH mshTimeAccuracy Yes No No

In this table, the following interpretation of the columns should be used: 1747

7) the Specified By columns indicates the Party that sets the value in the Collaboration Party 1748
Protocol, Message Header, or Routing Header 1749

8) if the CPA/CPP column contains a Yes then it indicates that the party in the Specified By 1750
column specifies the value that is present in the CPP 1751

9) if the CPA/CPP column contains a No then it indicates that the parameter value is never 1752
specified in the CPP 1753

10) if the Message Header or Routing Header columns contain a Yes then it indicates that the 1754
parameter value may be specified in the Header element or Routing Header and over-rides 1755
any value in the CPA. It the value is not specified in the Header element or Routing Header 1756
then the value in the CPA must be used. 1757

11) if the Message Header/Routing Header columns contain a No then it indicates that the 1758
value in the CPA is always used 1759

12) if the Message Header/Routing Header columns contain a N/A then it indicates that the 1760
value may be specified in another header 1761

These parameters are described below. 1762

10.6.2 From Party Parameters 1763

This section describes the parameters that are set by the From Party 1764

10.6.2.1 Delivery Semantics 1765

The deliverySemantics parameter may be present as either an element within the 1766
ebXMLHeader element or as a parameter within the CPA. See section 8.4.7.1 for more 1767
information. 1768

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 55 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

10.6.2.2 Delivery Receipt Requested 1769

The deliveryReceiptRequested parameter may be present as either an element within the 1770
ebXMLHeader element or as a parameter within the CPA. See section 8.4.7.2 for more 1771
information. 1772

10.6.2.3 Sync Reply Mode 1773

The syncReplyMode parameter may be present as either an element within the ebXMLHeader 1774
element or as a parameter within the CPA. See section 8.4.7.3 for more information. 1775

10.6.2.4 Time To Live 1776

The TimeToLive element may be presented within the ebXMLHeader element see section 1777
8.4.6.48.4.7.2 for more information. 1778

10.6.3 To Party Parameters 1779

This section describes the parameters that are set by the To Party 1780

10.6.3.1 Delivery Receipt Provided 1781

The DeliveryReceiptProvided parameter indicates whether a To Party can provide an 1782
acknowledgment message with a type attribute of deliveryReceipt in response to a message. 1783
Valid values are: 1784

• Signed - indicates that only a signed Delivery Receipt can be provided 1785
• Unsigned - indicates only an unsigned Delivery Receipt can be provided, 1786
• Both - indicates that either a signed or an unsigned Delivery Receipt can be provided, or 1787
• None - indicates that the To Party does not create Delivery Receipts 1788

If a MSH receives a Message where deliveryReceiptRequested is in not compatible with the 1789
value of DeliveryReceiptProvided then the MSH MUST return an Error Message to the From 1790
Party MSH, reporting that the DeliveryReceiptProvided is not supported. This must contain an 1791
errorCode set to NotSupported and a severity of Error. 1792

10.6.4 Sending MSH Parameters 1793

This section describes the parameters that are set by the Party that operates the Sending MSH. 1794

10.6.4.1 Reliable Messaging Method 1795

The ReliableMessagingMethod parameter indicates the requested method for Reliable 1796
Messaging that will be used when sending a Message. Valid values are: 1797

• ebXML in this case the ebXML Reliable Messaging Protocol as defined in section 10.2 is 1798
followed, or 1799

• Transport, in this case a Queuing Transport Protocol is used for reliable delivery of the 1800
message, see section10.3. 1801

10.6.4.2 Intermediate Ack Requested 1802

The IntermediateAckRequested parameter is used by the Sending MSH to request that the 1803
Receiving MSH that receives the Message returns an acknowledgment message with an 1804
Acknowledgment element with a type of IntemediateAcknowledgment.. 1805

Valid values for IntermediateAckRequested are: 1806

• Unsigned - requests that an unsigned Delivery Receipt is requested 1807

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 56 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• Signed - requests that a signed Delivery Receipt is requested, or 1808

• None - indicates that no Delivery Receipt is requested. 1809

The default value is None. 1810

10.6.4.3 Timeout Parameter 1811

The timeout parameter is an integer value that specifies the time in seconds that the Sending 1812
MSH MUST wait for an Acknowledgment Message before first resending a message to the 1813
Receiving MSH. 1814

10.6.4.4 Retries Parameter 1815

The retries Parameter is an integer value that specifies the maximum number of times the 1816
message being acknowledged must be resent to the Receiving MSH using the same 1817
Communications Protocol by the Sending MSH. 1818

10.6.4.5 RetryInterval Parameter 1819

The retryInterval parameter is an integer value specifying, in seconds, the time the Sending 1820
MSH MUST wait between retries, if an Acknowledgment Message is not received. 1821

10.6.4.6 Deciding when to resend a message 1822

The Sending MSH MUST resend the original message if an Acknowledgment Message has not 1823
been received from the Receiving MSH and either: 1824

• the message has not yet been resent and at least the time specified in the timeout 1825
parameter has passed since the first message was sent, or 1826

• the message has been resent, and 1827
- at least the time specified in the retryInterval has passed since the last time the 1828

message was resent, and 1829
- the message has been resent less than the number of times specified in the retries 1830

Parameter, and 1831

If the Sending MSH does not receive an Acknowledgment Message after the maximum number 1832
of retries, the Sending MSH SHOULD notify either: 1833

• the application and/or system administrator function if the Sending MSH is the From 1834
Party MSH, or 1835

• send an message reporting the delivery failure, if the Sending MSH is operating by an 1836
Intermediate Party (see section 10.5) 1837

10.6.5 Receiving MSH Parameters 1838

This section describes the parameters that are set by the Party that operates the Receiving MSH. 1839

10.6.5.1 Reliable Messaging Methods Supported 1840

The reliableMessagingMethodsSupported parameter is a list of the methods that a MSH uses 1841
to support Reliable Messaging. It must be a URI. The URI for the ebXML Reliable Messaging 1842
Protocol described in section 10.2 is http://www.ebxml.org/namespaces/reliableMessaging 1843

10.6.5.2 PersistDuration 1844

persistDuration is the minimum length of time, expressed as a [XMLSchema] timeDuration, that 1845
data from a Message that is sent reliably, is kept in Persistent Storage by a MSH that receives 1846
that Message. 1847

http://www/ebxml.org/namespaces/messageServiceServices

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 57 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

In order to support the filtering of duplicate messages, a Receiving MSH MUST, as a minimum, 1848
save the MessageId in persistent storage. It is also RECOMMENDED that the following be kept 1849
in Persistent Storage: 1850

• the complete message, at least until the information in the message has been passed to 1851
the application or other process that needs to process it 1852

• the time the message was received, so that the information can be used to generate the 1853
response to a Message Status Request (see section 9.1.1) 1854

persistDuration is specified in the CPA. 1855

A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the 1856
elapsed time indicated by persistDuration has passed since the message was first sent as the 1857
receiving MSH will probably not treat it as a duplicate. 1858

If a message cannot be sent successfully before persistDuration has passed, then the MSH 1859
should report a delivery failure (see section 10.5). 1860

Note that implementations may determine that a message is persisted for longer than the time 1861
specified in persistDuration, for example in order to meet legal requirements or the needs of a 1862
business process. This information is recorded separately within the CPA. 1863

In order to ensure that persistence is continuous as the message is passed from the receiving 1864
MSH to the process or application that is to handle it, it is RECOMMENDED that a message is 1865
not removed from persistent storage until the MSH knows that the data in the message has been 1866
received by the process/application. 1867

10.6.5.3 MSH Time Accuracy 1868

The mshTimeAccuracy parameter in the CPA indicates the minimum accuracy that a Receiving 1869
MSH keeps the clocks it uses when checking, for example, TimeToLive. It’s value is in the format 1870
“mm:ss” which indicates the accuracy in minutes and seconds. 1871

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 58 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

11 Error Reporting and Handling 1872

This section describes how one ebXML Message Service Handler (MSH) reports errors it detects 1873
in an ebXML Message to another MSH. 1874

11.1 Definitions 1875

For clarity two phrases are defined that are used in this section: 1876
• message in error. A message that contains or causes an error of some kind 1877
• message reporting the error. A message that contains an ebXML ErrorList element that 1878

describes the error(s) found in a message in error. 1879

11.2 Types of Errors 1880

One MSH needs to report to another MSH errors in a message in error that are associated with: 1881
• the structure or content of the Message Envelope (e.g. MIME) (see section 7), 1882
• the ebXML Message Header document (see section 8), 1883
• reliable messaging failures (see section 10), or 1884
• security (see section 12). 1885

Unless specified to the contrary, all references to "an error" in the remainder of this specification 1886
imply any or all of the types of errors listed above. 1887

Errors associated with Data Communication protocols are detected and reported using the 1888
standard mechanisms supported by that data communication protocol and are do not use the 1889
error reporting mechanism described here. 1890

11.3 When to generate Error Messages 1891

When an MSH detects an error in a message in error, a message reporting the error MUST be 1892
generated and delivered to the MSH that sent the message in error if: 1893

• the Error Reporting Location (see section11.4) to which the message reporting the error 1894
should be sent can be determined, and 1895

• the message in error does not have an ErrorList element with highestSeverity set to 1896
Error. 1897

If the Error Reporting Location cannot be found or the message in error has an ErrorList element 1898
with highestSeverity set to Error, it is RECOMMENDED that: 1899

• the error is logged, 1900
• the problem is resolved by other means, and 1901
• no further action is taken. 1902

11.3.1 Security Considerations 1903

Party’s that receive a Message that contains an error in the header SHOULD always respond to 1904
the message. However they MAY ignore the message and not respond if they consider that the 1905
message received is unauthorized or is part of some security attack. The decision process that 1906
results in this course of action is implementation dependent. 1907

11.4 Identifying the Error Reporting Location 1908

The Error Reporting Location is a URI that is specified by the sender of the message in error that 1909
indicates where to send a message reporting the error. This may be specified: 1910

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 59 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• by reference, for example by using the CPAId to identify the Party Agreement that 1911
contains the Error Reporting Location, or 1912

• by value, for example by using the ErrorURI contained within the RoutingHeader 1913
element. 1914

If a message contains an ErrorURI then the ErrorURI MUST be used. 1915

If an ErrorURI is not used then the ErrorURI implied by the CPA identified by the CpaID on the 1916
message SHOULD be used. If no ErrorURI is implied by the CPA, then the SenderURI MUST be 1917
used. 1918

Even if the message in error cannot be successfully analyzed or parsed, MSH implementers 1919
SHOULD try to determine the Error Reporting Location by other means. How this is done is an 1920
implementation decision. 1921

11.5 Service and Action Element Values 1922

An ErrorList element can be included in an ebXMLHeader that is part of a message that is being 1923
sent as a result of processing of an earlier message. In this case, the values for the Service and 1924
Action elements are set by the designer of the Service (see section 8.4.4). 1925

An ErrorList element can also be included in an ebXMLHeader that is not being sent as a result 1926
of the processing of an earlier message. In this case, the values of the Service and Action 1927
elements MUST be set as follows: 1928

• The Service element MUST be set to: 1929
http://www.ebxml.org/namespaces/messageService/MessageStatus 1930

• The Action element MUST be set to MessageError. 1931

http://www.ebxml.org/namespaces/messageService/MessageAcknowledgement
http://www.ebxml.org/namespaces/messageService/MessageAcknowledgement

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 60 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

12 Security 1932

The ebXML Message Service, by its very nature, presents certain security risks. A Message 1933
Service may be at risk by means of: 1934

• Unauthorized access 1935
• Data integrity and/or confidentiality attacks (e.g. through man-in-the-middle attacks) 1936
• Denial-of-Service, spoofing, bombing attacks 1937

Each security risk is described in detail in the ebXML Technical Architecture Security 1938
Specification [EBXMLSEC]. 1939

Each of these security risks MAY be addressed in whole, or in part, by the application of one, or a 1940
combination, of the countermeasures described in this section. This specification describes a set 1941
of profiles, or combinations of selected countermeasures, that have been selected to address key 1942
risks based upon commonly available technologies. Each of the specified profiles includes a 1943
description of the risks that are not addressed. 1944

Application of countermeasures SHOULD be balanced against an assessment of the inherent 1945
risks and the value of the asset(s) that might be placed at risk. 1946

12.1 Security and Management 1947

No technology, regardless of how advanced it might be, is an adequate substitute to the effective 1948
application of security management policies and practices. 1949

It is STRONGLY RECOMMENDED that the site manager of an ebXML Message Service apply 1950
due diligence to the support and maintenance of its; security mechanism, site (or physical) 1951
security procedures, cryptographic protocols, update implementations and apply fixes as 1952
appropriate. (See http://www.cert.org/ and http://ciac.llnl.gov/) 1953

12.2 Collaboration Protocol Agreement 1954

The configuration of Security for MSHs is specified in the CPA. Three areas of the CPA have 1955
security definitions as follows: 1956

• The Document Exchange section addresses security to be applied to the payload of the 1957
message. The MSH is not responsible for any security specified at this level but may 1958
offer these services to the message sender. 1959

• The Message section addresses security applied to the entire ebXML Document, which 1960
includes the header and the payload. 1961

• The Transport section addresses the Transport level. The MSH is not responsible for 1962
any security specified at this level. 1963

12.3 Countermeasure Technologies 1964

12.3.1 Persistent Digital Signature 1965

If signatures are being used to digitally sign an ebXML message then XML Signature [DSIG] 1966
MUST be used to bind the ebXML Header Document to the ebXML Payload or data elsewhere on 1967
the web that relates to the message. It is also strongly RECOMMENDED that XML Signature is 1968
used to digitally sign the Payload on its own. 1969

The only available technology that can be applied to the purpose of digitally signing an ebXML 1970
Message (both the ebXMLHeader and its associated payload objects) is provided by technology 1971
that conforms to the W3C/IETF joint XML Signature specification [XMLDSIG]. An XML Signature 1972
conforming to this specification can selectively sign portions of an XML document(s), permitting 1973

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 61 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

the documents to be augmented (new element content added) while preserving the validity of the 1974
signature(s). 1975

An ebXML Message that requires a digital signature SHALL be signed following the processed 1976
defined in this section of the specification and SHALL be in full compliance with [XMLDSIG]. 1977

12.3.1.1 Signature Generation 1978

13) Create a SignedInfo element with SignatureMethod, CanonicalizationMethod, and 1979
Reference(s) elements for the ebXMLHeader document and any required payload objects, as 1980
prescribed by [XMLDSIG]. 1981

14) Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms 1982
specified in SignedInfo as specified in [XMLDSIG]. 1983

15) Construct the Signature element that includes the SignedInfo, KeyInfo (RECOMMENDED), 1984
and SignatureValue elements as specified in [XMLDSIG]. 1985

16) Include the namespace qualified Signature element in the ebXMLHeader document just 1986
signed, following the RoutingHeaderList element. 1987

The ds:SignedInfo element SHALL be composed of zero or one ds:CanonicalizationMethod 1988
element, the ds:SignatureMethod and one or more ds:Reference elements. 1989

The ds:CanonicalizationMethod element is defined as OPTIONAL in [XMLDSIG], meaning that 1990
the element need not appear in an instance of a ds:SignedInfo element. The default 1991
canonicalization method that is applied to the data to be signed is [XMLC14N] in the absence of a 1992
ds:Canonicalization element that specifies otherwise. This default SHALL also serve as the 1993
default canonicalization method for the ebXML Message Service. 1994

The ds:SignatureMethod element SHALL be present and SHALL have an Algorithm attribute. The 1995
RECOMMENDED value for the Algorithm attribute is: 1996

 http://www.w3.org/2000/02/xmldsig#sha1 1997

This RECOMMENDED value SHALL be supported by all compliant ebXML Message Service 1998
software implementations. 1999

The ds:Reference element for the ebXMLHeader document SHALL have an URI attribute value 2000
of "" to provide for the signature to be applied to the document that contains the ds:Signature 2001
element (the ebXMLHeader document). The ds:Reference element for the ebXMLHeader 2002
document MAY include a Type attribute that has a value 2003
"http://www.w3.org/2000/02/xmldsig#Object" in accordance with [XMLDSIG]. This attribute is 2004
purely informative. It MAY be omitted. Implementations of the ebXML MSH SHALL be prepared 2005
to handle either case. The ds:Reference element MAY include the optional id attribute. 2006

The ds:Reference element for the ebXMLHeader document SHALL include a child ds:Transform 2007
element that excludes the containing ds:Signature element and all its descendants as well as the 2008
RoutingHeaderList element and all its descendants as these elements are subject to change. The 2009
ds:Transform element SHALL include a child ds:XPath element that has a value of: 2010
 2011
/descendant-or-self::node()[not(ancestor-or-self::ds:Signature[@id='S1']) and not(ancestor-or-2012
self::RoutingHeaderList)]2013

Each payload object that requires signing SHALL be represented by a ds:Reference element that 2014
SHALL have an URI attribute that resolves to that payload object. This MAY be either the 2015
Content-Id URI of the payload object enveloped in the MIME ebXML Payload Container, or an 2016
URI that matches the Content-Location header of the payload object enveloped in the ebXML 2017
Payload Container, or an URI that resolves to an external payload object that is external to the 2018
ebXML Payload Container. It is STRONGLY RECOMMENDED that the URI attribute value match 2019
the xlink:href URI value of the corresponding Manifest/Reference element for that payload object. 2020
However, this is NOT REQUIRED. 2021

http://www.w3.org/2000/02/xmldsig#sha1
mailto:descendant-or-self::node()[not(ancestor-or-self::dsig:Signature[@id='S1

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 62 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Example of digitally signed ebXMLHeader document: 2022
 2023
<?xml version="1.0" encoding="utf-8"?>2024
<ebXMLHeader2025
xmlns="http://www.ebxml.org/namespaces/messageHeader"2026
xmlns:xlink="http://www.w3.org/1999/xlink"2027
version="1.0">2028
<Manifest id="Mani01">2029
<Reference xlink:href="cid://blahblahblah"2030
xlink:role="http://ebxml.org/gci/invoice">2031
<Schema version="1.0" location="http://ebxml.org/gci/busdocs/invoice.dtd"/>2032

</Reference>2033
</Manifest>2034
<Header>2035

...2036
</Header>2037
<RoutingHeaderList>2038
<RoutingHeader>2039
...2040

</RoutingHeader>2041
</RoutingHeaderList>2042
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmlds#">2043
<ds:SignedInfo>2044
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/WD-xml-c14n-20001011"/>2045
<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmlds#dsa-sha1"/>2046
<ds:Reference URI="">2047
<ds:Transforms>2048
<ds:Transform>2049
<XPath>/descendant-or-self::node()[not(ancestor-or-self::ds:Signature[@id='S1']) and2050

not(ancestor-or-self::RoutingHeaderList)]</XPath>2051
</ds:Transform>2052

</ds:Transforms>2053
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>2054
<ds:DigestValue>...</ds:DigestValue>2055

</ds:Reference>2056
<ds:Reference URI="cid://blahblahblah/">2057
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmlds#sha1"/>2058
<ds:DigestValue>...</ds:DigestValue>2059

</ds:Reference>2060
</ds:SignedInfo>2061
<ds:SignatureValue>...</ds:SignatureValue>2062
<ds:KeyInfo>...</ds:KeyInfo>2063

</ds:Signature>2064
</ebXMLHeader>2065
 2066

12.3.2 Persistent Signed Receipt 2067

An ebXML Message that has been digitally signed MAY be acknowledged with a DeliveryReceipt 2068
acknowledgment message that itself is digitally signed in the manner described in the previous 2069
section. The acknowledgment message MUST contain the set of ds:DigestValue elements 2070
contained in the ds:Signature element of the original message within the Acknowledgment 2071
element. 2072

12.3.3 Non-persistent Authentication 2073

Non-persistent authentication is provided by the communications channel used to transport the 2074
ebXML message. This authentication MAY be either in one direction—from the session initiator to 2075
the receiver—or bi-directional. The specific method will be determined by the communications 2076
protocol used. For instance, the use of a secure network protocol, such as [TLS] or [IPSEC] 2077
provides the sender of an ebXML Message to authenticate the destination for the TCP/IP 2078
environment. 2079

12.3.4 Non-persistent Integrity 2080

Use of a secure network protocol such as [TLS] or [IPSEC] MAY be configured so as to provide 2081
for integrity check CRCs of the packets transmitted via the network connection. 2082

http://www.w3.org/2000/09/xmlds
mailto:descendant-or-self::node()[not(ancestor-or-self::dsig:Signature[@id='S1

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 63 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

12.3.5 Persistent Confidentiality 2083

XML Encryption is ana W3C/IETF joint activity that is actively engaged in the drafting of a 2084
specification for the selective encryption of an XML document(s). It is anticipated that this 2085
specificationthis specification will be completed within the next year. The ebXML Transport, 2086
Routing and Packaging team has identified this technology as the only viable means of providing 2087
persistent, selective confidentiality of elements within an ebXML Message including the 2088
ebXMLHeader document. 2089

Confidentiality for ebXML Payloads MAY be provided by functionality possessed by a MSH. 2090
However, this specification states that it is not the responsibility of the MSH to provide security for 2091
the ebXML Payloads. Payload confidentiality MAY be provided by using XML Encryption (when 2092
available) or some other cryptographic process, such as [S/MIME], [S/MIMEV3], or [PGP/MIME], 2093
that is bilaterally agreed upon by the parties involved. Since XML Encryption is not currently 2094
available, it is RECOMMENDED that [S/MIME] encryption methods be used for ebXML Payloads. 2095
The XML Encryption standard SHALL be the default encryption method when XML Encryption 2096
has achieved W3C Recommendation status. 2097

Section xx (TBD) describes RECOMMENDED bindings for providing persistent confidentiality 2098
using MIME-based encryption schemes. 2099

12.3.6 Non-persistent Confidentiality 2100

Use of a secure network protocol such as [TLS] or [IPSEC] provides transient confidentiality of a 2101
message as it is transferred between two ebXML MSH nodes. 2102

12.3.7 Persistent Authorization 2103

The OASIS Security Services TC is actively engaged in the definition of a specification that 2104
provides for the exchange of security credentials, including NameAssertion and Entitlements that 2105
is based on [S2ML]. Use of technology that is based on this anticipated specification MAY be 2106
used to provide persistent authorization for an ebXML Message once it becomes available. 2107
ebXML has a formal liaison to this TC. There are also many ebXML member organizations and 2108
contributors that are active members of the OASIS Security Services TC such as Sun, IBM, 2109
CommerceOne, Cisco and others that are endeavoring to ensure that the specification meets the 2110
requirements of providing persistent authorization capabilities for the ebXML Message Service. 2111

12.3.8 Non-persistent Authorization 2112

Use of a secure network protocol such as [TLS] or [IPSEC] MAY be configured to provide for 2113
bilateral authentication of certificates prior to establishing a session. This provides for the ability 2114
for an ebXML MSH to authenticate the source of a connection that can be used to recognize the 2115
source as an authorized source of ebXML Messages. 2116

12.3.9 Trusted Timestamp 2117

At the time of this specification, services that offer trusted timestamp capabilities are becoming 2118
available. Once these become more widely available, and a standard has been defined for their 2119
use and expression, these standards, technologies and services will be evaluated and considered 2120
for use in providing this capability. 2121

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 64 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Pr
es

en
t i

n
ba

se
lin

e
M

SH

 Pe
rs

is
te

nt
 d

ig
ita

l s
ig

na
tu

re

N
on

-p
er

si
st

en
t a

ut
he

nt
ic

at
io

n

Pe
rs

is
te

nt
 s

ig
ne

d
re

ce
ip

t

N
on

-p
er

si
st

en
t i

nt
eg

rit
y

Pe
rs

is
te

nt
 c

on
fid

en
tia

lit
y

N
on

-p
er

si
st

en
t c

on
fid

en
tia

lit
y

Pe
rs

is
te

nt
 a

ut
ho

riz
at

io
n

N
on

-p
er

si
st

en
t a

ut
ho

riz
at

io
n

Tr
us

te
d

tim
st

am
p

Description of Profile

" Profile 0 no security services are applied to data

" Profile 1 " sending MSH applies XML/DSIG structures to
message

 Profile 2 " "
sending MSH authenticates and receiving MSH
validates authorization from communication
channel credentials

 Profile 3 " " sending MSH authenticates and receiving MSH
used secure channel to transmit data

 Profile 4

" "
sending MSH authenticates, the receiving MSH
performs integrity checks using communications
protocol

 Profile 5 " sending MSH authenticates the communication
channel only (e.g., SSL 3.0 over TCP/IP)

 Profile 6 " "
sending MSH applies XML/DSIG structures to
message and passes in secure communications
channel

 Profile 7 " "
sending MSH applies XML/DSIG structures to
message and receiving MSH returns a signed
receipt

 Profile 8 " " " combination of profile 6 and 7

 Profile 9 " " Profile 5 with a trusted timestamp applied

 Profile 10 " " " Profile 9 with receiving MSH returning a signed
receipt

 Profile 11 " " " Profile 6 with the receiving MSH applying a
trusted timestamp

 Profile 12 " " " " Profile 8 with the receiving MSH applying a
trusted timestamp

 Profile 13 " "
sending MSH applies XML/DSIG structures to
message and applies confidentiality structures
(XML-Encryption)

 Profile 14 " " " Profile 13 with a signed receipt

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 65 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Pr
es

en
t i

n
ba

se
lin

e
M

SH

 Pe
rs

is
te

nt
 d

ig
ita

l s
ig

na
tu

re

N
on

-p
er

si
st

en
t a

ut
he

nt
ic

at
io

n

Pe
rs

is
te

nt
 s

ig
ne

d
re

ce
ip

t

N
on

-p
er

si
st

en
t i

nt
eg

rit
y

Pe
rs

is
te

nt
 c

on
fid

en
tia

lit
y

N
on

-p
er

si
st

en
t c

on
fid

en
tia

lit
y

Pe
rs

is
te

nt
 a

ut
ho

riz
at

io
n

N
on

-p
er

si
st

en
t a

ut
ho

riz
at

io
n

Tr
us

te
d

tim
st

am
p

Description of Profile

 Profile 15 " " "
sending MSH applies XML/DSIG structures to
message, a trusted timestamp is added to
message, receiving MSH returns a signed receipt

 Profile 16 " " " Profile 13 with a trusted timestamp applied

 Profile 17 " " " " Profile 14 with a trusted timestamp applied

 Profile 18 " "
sending MSH applies XML/DSIG structures to
message and forwards authorization credentials
(S2ML)

 Profile 19 " " " Profile 18 with receiving MSH returning a signed
receipt

 Profile 20 " " " " Profile 19 with the a trusted timestamp being
applied to the sending MSH message

 Profile 21 " " " " " Profile 19 with the sending MSH applying
confidentiality structures (XML-Encryption)

 Profile 22 " sending MSH encapsulates the message within
confidentiality structures (XML-Encryption)

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 66 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

13 Synchronous and Asynchronous Responses 2122

This section may not be needed. 2123

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 67 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

14 References 2124

<DB>What’s the difference between normative and non-normative</DB> 2125

14.1 Normative References 2126

[HTTP] RFC 2068 - Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, 2127
J. Mogul, H. Frystyk, T. Berners-Lee, January 1997 2128

[ISO 8601] International Standards Organization Ref. ISO 8601 Second Edition, 2129
Published 1997 2130

[RFC 2392] IETF Request For Comments 2392. Content-ID and Message-ID Uniform 2131
Resource Locators. E. Levinson, Published August 1998 2132

[RFC 2396] IETF Request For Comments 2396. Uniform Resource Identifiers (URI): 2133
Generic Syntax. T Berners-Lee, Published August 1998 2134

 2135

[RFC2045] IETF RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: 2136
Format of Internet Message Bodies, N Freed & N Borenstein, Published 2137
November 1996 2138

[SMTP] RFC 821, Simple Mail Transfer Protocol, J Postel, August 1982 2139

[TLS] RFC2246, T. Dierks, C. Allen. January 1999. 2140

[UTF-8] UTF-8 is an encoding that conforms to ISO/IEC 10646. See [XML] for usage 2141
conventions. 2142

[XML] W3C XML 1.0 Recommendation, 2143
http://www.w3.org/TR/2000/REC-xml-20001006 2144

[XML Namespace] Recommendation for Namespaces in XML, World Wide Web Consortium, 14 2145
January 1999, http://www.w3.org/TR/REC-xml-names 2146

14.2 Non-Normative References 2147

[Glossary] ebXML Glossary, see ebXML Project Team Home Page 2148

[PGP/MIME] RFC2015, "MIME Security with Pretty Good Privacy (PGP)", M. Elkins. 2149
October 1996. 2150

[S/MIME] RFC2311, “S/MIME Version 2 Message Specification”, S. Dusse, P. 2151
Hoffman, B. Ramsdell, L. Lundblade, L. Repka. March 1998. 2152

[S/MIMECH] RFC 2312, “S/MIME Version 2 Certificate Handling”, S. Dusse, P. Hoffman, 2153
B. Ramsdell, J. Weinstein. March 1998. 2154

[TRPREQ] ebXML Transport, Routing and Packaging: Overview and Requirements, 2155
Version 0.96, Published 25 May 2000 2156

[XLINK] W3C Xlink Candidate Recommendation, http://www.w3.org/TR/xlink/ 2157

[XMLDSIG] Joint W3C/IETF XML Digital Signature specification, 2158
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/ 2159

[XMLMedia] IETF Internet Draft on XML Media Types. See http://www.imc.org/draft-2160
murata-xml-08. Note. It is anticipated that this Internet Draft will soon become 2161
a RFC. Final versions of this specification will refer to the equivalent RFC. 2162

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 68 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

[XMLSchema] W3C XML Schema Candidate Recommendation, 2163
http://www.w3.org/TR/xmlschema-0/ 2164
http://www.w3.org/TR/xmlschema-1/ 2165
http://www.w3.org/TR/xmlschema-2/ 2166

[XMTP] XMTP - Extensible Mail Transport Protocol 2167
http://www.openhealth.org/documents/xmtp.htm 2168

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.openhealth.org/documents/xmtp.htm

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 69 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

15 Disclaimer 2169

The views and specification expressed in this document are those of the authors and are not 2170
necessarily those of their employers. The authors and their employers specifically disclaim 2171
responsibility for any problems arising from correct or incorrect implementation or use of this 2172
design. 2173

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 70 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

16 Contact Information 2174
Team Leader 2175
Name Rik Drummond 2176
Company Drummond Group, Inc. 2177
Street 5008 Bentwood Crt. 2178
City, State, Postal Code Fort Worth, Texas 76132 2179
Country USA 2180
Phone +1 (817) 294-7339 2181
EMail: rik@drummondgroup.com 2182
 2183
Vice Team Leader 2184
Name Chris Ferris 2185
Company Sun Microsystems 2186
Street One Network Drive 2187
City, State, Postal Code Burlington, MA 01803-0903 2188
Country USA 2189
Phone: +1 (781) 442-3063 2190
EMail: chris.ferris@sun.com 2191
 2192
Team Editor 2193
Name David Burdett 2194
Company Commerce One 2195
Street 4400 Rosewood Drive 2196
City, State, Postal Code Pleasanton, CA 94588 2197
Country USA 2198
Phone: +1 (925) 520-4422 2199
EMail: david.burdett@commerceone.com 2200
 2201
Authors 2202
Name Dick Brooks 2203
Company Group 8760 2204
Street 110 12th Street North, Suite F103 2205
City, State, Postal Code Birmingham, Alabama 35203 2206
Phone: +1 (205) 250-8053 2207
E-mail: dick@8760.com 2208
 2209
Name David Burdett 2210
Company Commerce One 2211
Street 4400 Rosewood Drive 2212
City, State, Postal Code Pleasanton, CA 94588 2213
Country USA 2214
Phone: +1 (925) 520-4422 2215
EMail: david.burdett@commerceone.com 2216
 2217
Name Chris Ferris 2218
Company Sun Microsystems 2219
Street One Network Drive 2220
City, State, Postal Code Burlington, MA 01803-0903 2221
Country USA 2222
Phone: +1 (781) 442-3063 2223
EMail: chris.ferris@east.sun.com 2224
 2225
Name John Ibbotson 2226
Company IBM UK Ltd 2227

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 71 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Street Hursley Park 2228
City, State, Postal Code Winchester SO21 2JN 2229
Country United Kingdom 2230
Phone: +44 (1962) 815188 2231
Email: john_ibbotson@uk.ibm.com 2232
 2233
Name Nicholas Kassem 2234
Company Java Software, Sun Microsystems 2235
Street 901 San Antonio Road, MS CUP02-201 2236
City, State, Postal Code Palo Alto, CA 94303-4900 2237
Phone: +1 (408) 863-3535 2238
E-mail: Nick.Kassem@eng.sun.com 2239
 2240
Name Masayoshi Shimamura 2241
Company Fujitsu Limited 2242
Street Shinyokohama Nikko Bldg., 15-16, Shinyokohama 2-chome 2243
City, State, Postal Code Kohoku-ku, Yokohama 222-0033, Japan 2244
Phone: +81-45-476-4590 2245
E-mail: shima@rp.open.cs.fujitsu.co.jp 2246
 2247
Document Editing Team 2248
Name Ralph Berwanger 2249
Company bTrade.com 2250
Street 2324 Gateway Drive 2251
City, State, Postal Code Irving, TX 75063 2252
Country USA 2253
Phone: +1 (972) 580-2900 2254
EMail: rberwanger@btrade.com 2255
 2256
Name Ian Jones 2257
Company British Telecommunications 2258
Street Enterprise House, 84-85 Adam Street 2259
City, State, Postal Code Cardiff, CF24 2XF 2260
Country United Kingdom 2261
Phone: +44 29 2072 4063 2262
EMail: ian.c.jones@bt.com 2263
 2264
Name Martha Warfelt 2265
Company Daimler Chrysler Corporation 2266
Street 800 Chrysler Drive 2267
City, State, Postal Code Auburn Hills, MI 2268
Country USA 2269
Phone: +1 (248) 944-5481 1210 2270
EMail: maw2@daimlerchrysler.com 1211 2271

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 72 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix A ebXMLHeader Schema and Data Type 2272

Definitions 2273

A.1 Schema Definition 2274

The following is the definition of the ebXMLHeader element as a schema that conforms to 2275
[XMLSchema]. <DB>The few changes from version 0.91 are highlighted.</DB> 2276
 2277
<?xml version = "1.0" encoding = "UTF-8"?>2278
<xsd:schema xmlns="http://www.ebxml.org/namespaces/messageHeader"2279
targetNamespace="http://www.ebxml.org/namespaces/messageHeader"2280
xmlns:ds="http://www.w3.org/2000/10/xmldsig#" xmlns:xlink="http://www.w3.org/1999/xlink"2281
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema">2282
<xsd:import namespace="http://www.w3.org/2000/10/xmldsig#"2283

schemaLocation="http://www.w3.org/TR/2000/10/xmldsig-core-schema/xmldsig-core-schema.xsd"/>2284
2285

<!-- EBXML HEADER -->2286
<xsd:element name="ebXMLHeader">2287
<xsd:complexType>2288
<xsd:sequence>2289
<xsd:element ref="Manifest" minOccurs="0" maxOccurs="1"/>2290
<xsd:element ref="Header"/>2291
<xsd:element ref="RoutingHeaderList" minOccurs="0" maxOccurs="1"/>2292
<xsd:element ref="Acknowledgment" minOccurs="0" maxOccurs="1"/>2293
<xsd:element ref="StatusData" minOccurs="0" maxOccurs="1"/>2294
<xsd:element ref="ApplicationHeaders" minOccurs="0" maxOccurs="1"/>2295
<xsd:element ref="ErrorList" minOccurs="0" maxOccurs="1"/>2296
<xsd:element ref="ds:Signature" minOccurs="0" maxOccurs="unbounded"/>2297

</xsd:sequence>2298
<xsd:attribute name="version" use="fixed" value="0.930.92" type="xsd:string"/>2299
<xsd:anyAttribute namespace="##any" processContents="lax"/>2300

</xsd:complexType>2301
</xsd:element>2302

2303
<!-- MANIFEST -->2304
<xsd:element name="Manifest">2305
<xsd:complexType>2306
<xsd:sequence>2307
<xsd:element ref="Reference" maxOccurs="unbounded"/>2308
<xsd:any namespace="##other" processContents="lax"/>2309

</xsd:sequence>2310
<xsd:attribute name="id" use="required" type="xsd:ID"/>2311

</xsd:complexType>2312
</xsd:element>2313

2314
<xsd:element name="Reference">2315
<xsd:complexType>2316
<xsd:sequence>2317
<xsd:element ref="Schema" minOccurs="0" maxOccurs="unbounded"/>2318
<xsd:element ref="Description" minOccurs="0" maxOccurs="1"/>2319
<xsd:any namespace="##other" processContents="lax"/>2320

</xsd:sequence>2321
<xsd:attribute name="id" use="required" type="xsd:ID"/>2322

<!-- Changed required to fixed on xlink:type -->2323
<xsd:attribute name="xlink:type" use="fixed" type="xsd:string" value="simple"/>2324
<xsd:attribute name="xlink:href" use="required" type="xsd:uriReference"/>2325

<!-- Changed to optional on xlink:role -->2326
<xsd:attribute name="xlink:role" type="xsd:uriReference"/>2327

</xsd:complexType>2328
</xsd:element>2329

2330
<xsd:element name="Schema">2331
<xsd:complexType>2332

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 73 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<xsd:simpleContent>2333
<xsd:attribute name="location" use="required" type="xsd:uriReference"/>2334
<xsd:attribute name="version" type="xsd:string"/>2335

</xsd:simpleContent>2336
</xsd:complexType>2337

</xsd:element>2338
2339

<!-- HEADER -->2340
<xsd:element name="Header">2341
<xsd:complexType>2342
<xsd:sequence>2343
<xsd:element ref="From"/>2344
<xsd:element ref="To"/>2345
<xsd:element ref="CPAId"/>2346
<xsd:element ref="ConversationId"/>2347
<xsd:element ref="Service"/>2348
<xsd:element ref="Action"/>2349
<xsd:element ref="MessageData"/>2350

<!-- Changed Reliable Messaging Inf to Quality Of Service Info. -->2351
<!-- Removed DeliveryReceiptRequested and TimeToLive and made them optional attributes of2352
Quality of Service Info -->2353

<xsd:element ref="QualityOfServiceInfo" minOccurs="0" maxOccurs="1"/>2354
<!-- Changed description from maxOccurs 1 to unbounded -->2355

<xsd:element ref="Description" minOccurs="0" maxOccurs="unbounded"/>2356
<!-- Added SequenceNumber element -->2357

<xsd:element ref="SequenceNumber" minOccurs="0" maxOccurs="1"/>2358
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2359

</xsd:sequence>2360
<xsd:attribute name="id" type="xsd:ID"/>2361

</xsd:complexType>2362
</xsd:element>2363

2364
<xsd:element name="To">2365
<xsd:complexType>2366
<xsd:simpleContent>2367
<xsd:extension base="xsd:string">2368
<xsd:attribute name="type" type="xsd:string"/>2369

</xsd:extension>2370
</xsd:simpleContent>2371

</xsd:complexType>2372
</xsd:element>2373

2374
<xsd:element name="CPAId" type="xsd:string"/>2375

2376
<xsd:element name="ConversationId" type="xsd:string"/>2377

2378
<xsd:element name="Service" type="xsd:string"/>2379

2380
<xsd:element name="Action" type="xsd:string"/>2381

2382
<xsd:element name="MessageData">2383
<xsd:complexType>2384
<xsd:sequence>2385
<xsd:element ref="MessageId"/>2386
<xsd:element ref="Timestamp"/>2387
<xsd:element ref="RefToMessageId" minOccurs="0" maxOccurs="1"/>2388

</xsd:sequence>2389
</xsd:complexType>2390

</xsd:element>2391
2392

<xsd:element name="MessageId" type="xsd:string"/>2393
2394

<xsd:element name="QualityOfServiceInfo">2395
<xsd:complexType>2396
<xsd:simpleContent>2397
<xsd:attribute name="deliverySemantics" use="default" value="BestEffort"/>2398
<xsd:simpleType>2399
<xsd:restriction base="xsd:NMTOKEN">2400
<xsd:enumeration value="OnceAndOnlyOnce"/>2401
<xsd:enumeration value="BestEffort"/>2402

</xsd:restriction>2403

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 74 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

</xsd:simpleType>2404
<!-- Added in messageOrderSemantics attribute -->2405

<xsd:attribute name="messageOrderSemantics" use="default" value="NotGuaranteed"/>2406
<xsd:simpleType>2407
<xsd:restriction base="xsd:NMTOKEN">2408
<xsd:enumeration value="Guaranteed"/>2409
<xsd:enumeration value="NotGuaranteed"/>2410

</xsd:restriction>2411
</xsd:simpleType>2412

<!-- Added in deliveryReceiptRequested attribute -->2413
<xsd:attribute name="deliveryReceiptRequested" use="default" value="None"/>2414
<xsd:simpleType>2415
<xsd:restriction base="xsd:NMTOKEN">2416
<xsd:enumeration value="Signed"/>2417
<xsd:enumeration value="UnSigned"/>2418
<xsd:enumeration value="None"/>2419

</xsd:restriction>2420
</xsd:simpleType>2421

<!-- Added in timeToLive attribute -->2422
<xsd:attribute name="timeToLive" type="xsd:timeInstant"/>2423

</xsd:simpleContent>2424
</xsd:complexType>2425

</xsd:element>2426
2427

<!-- ROUTING HEADER LIST -->2428
<xsd:element name="RoutingHeaderList">2429
<xsd:complexType>2430
<xsd:sequence>2431
<xsd:element ref="RoutingHeader" maxOccurs="unbounded"/>2432

</xsd:sequence>2433
<xsd:attribute name="id" type="xsd:ID"/>2434

</xsd:complexType>2435
</xsd:element>2436

2437
<xsd:element name="RoutingHeader">2438
<xsd:complexType>2439
<xsd:sequence>2440
<xsd:element ref="SenderURI"/>2441
<xsd:element ref="ReceiverURI"/>2442
<xsd:element ref="ErrorURI" minOccurs="0" maxOccurs="1"/>2443
<xsd:element ref="Timestamp"/>2444
<xsd:element ref="SequenceNumber" minOccurs="0" maxOccurs="1"/>2445
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2446

</xsd:sequence>2447
<xsd:attribute name="reliableMessagingMethod"/>2448
<xsd:simpleType>2449
<xsd:restriction base="xsd:NMTOKEN">2450
<xsd:enumeration value="ebXML"/>2451
<xsd:enumeration value="Transport"/>2452

</xsd:restriction>2453
</xsd:simpleType>2454

<xsd:attribute name="intermediateAckRequested"/>2455
<xsd:simpleType>2456
<xsd:restriction base="xsd:NMTOKEN">2457
<xsd:enumeration value="Signed"/>2458
<xsd:enumeration value="UnSigned"/>2459
<xsd:enumeration value="None"/>2460

</xsd:restriction>2461
</xsd:simpleType>2462

</xsd:complexType>2463
</xsd:element>2464

2465
<xsd:element name="SenderURI" type="xsd:uriReference"/>2466

2467
<xsd:element name="ReceiverURI" type="xsd:uriReference"/>2468

2469
<xsd:element name="SequenceNumber" type="xsd:positiveInteger" minOccurs="0" maxOccurs="1"/>2470

2471
<xsd:element name="ErrorURI" type="xsd:uriReference" minOccurs="0" maxOccurs="1"/>2472

2473

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 75 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!-- APPLICATION HEADERS -->2474
<xsd:element name="ApplicationHeaders" type="ApplicationHeaders"/>2475
<xsd:complexType name="ApplicationHeaders">2476
<xsd:sequence>2477
<xsd:any namespace="##other" processContents="lax"/>2478

</xsd:sequence>2479
<xsd:attribute name="id" type="xsd:ID"/>2480

</xsd:complexType>2481
2482

<!-- ACKNOWLEDGEMENT -->2483
<xsd:element name="Acknowledgment">2484
<xsd:complexType>2485
<xsd:sequence>2486
<xsd:element ref="Timestamp"/>2487
<xsd:element ref="From" minOccurs="0" maxOccurs="1"/>2488

</xsd:sequence>2489
<xsd:attribute name="id" type="xsd:ID"/>2490
<xsd:attribute name="type" use="default" value="DeliveryReceipt"/>2491
<xsd:simpleType>2492
<xsd:restriction base="xsd:NMTOKEN">2493
<xsd:enumeration value="DeliveryReceipt"/>2494
<xsd:enumeration value="IntermediateAck"/>2495

</xsd:restriction>2496
</xsd:simpleType>2497
<xsd:attribute name="signed" type="xsd:boolean"/>2498

</xsd:complexType>2499
</xsd:element>2500

2501
<!-- ERROR LIST -->2502
<xsd:element name="ErrorList">2503
<xsd:complexType>2504
<xsd:sequence>2505
<xsd:element ref="Error" maxOccurs="unbounded"/>2506

</xsd:sequence>2507
<xsd:attribute name="id" type="xsd:ID"/>2508
<xsd:attribute name="highestSeverity" use="default" value="Warning"/>2509
<xsd:simpleType>2510
<xsd:restriction base="xsd:string">2511
<xsd:enumeration value="Warning"/>2512
<xsd:enumeration value="Error"/>2513

</xsd:restriction>2514
</xsd:simpleType>2515

</xsd:complexType>2516
</xsd:element>2517

2518
<xsd:element name="Error">2519
<xsd:complexType>2520
<xsd:attribute name="codeContext" use="required" type="xsd:uriReference"/>2521
<xsd:attribute name="errorCode" use="required" type="xsd:string"/>2522
<xsd:attribute name="severity" use="default" value="Warning"/>2523
<xsd:simpleType>2524
<xsd:restriction base="xsd:NMTOKEN">2525
<xsd:enumeration value="Warning"/>2526
<xsd:enumeration value="Error"/>2527

</xsd:restriction>2528
</xsd:simpleType>2529

<xsd:attribute name="location" type="xsd:string"/>2530
<xsd:attribute name="xml:lang" type="xsd:language"/>2531
<xsd:attribute name="errorMessage" type="xsd:string"/>2532
<xsd:attribute name="softwareDetails" type="xsd:string"/>2533

</xsd:complexType>2534
</xsd:element>2535

2536
<!-- STATUS DATA -->2537
<xsd:element name="StatusData">2538
<xsd:sequence>2539
<xsd:element ref="RefToMessageId"/>2540
<xsd:element ref="Timestamp" minOccurs="0" maxOccurs="1"/>2541
<xsd:element name="ForwardURI" type="xsd:uriReference" minOccurs="0" maxOccurs="1"/>2542

</xsd:sequence>2543
<xsd:attribute name="messageStatus"/>2544

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 76 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<xsd:simpleType>2545
<xsd:restriction base="xsd:NMTOKEN">2546
<xsd:enumeration value="UnAuthorized"/>2547
<xsd:enumeration value="NotRecognized"/>2548
<xsd:enumeration value="Received"/>2549
<xsd:enumeration value="Processed"/>2550
<xsd:enumeration value="Forwarded"/>2551

</xsd:restriction>2552
</xsd:simpleType>2553

</xsd:element>2554
2555

<!-- COMMON ELEMENTS -->2556
<xsd:element name="From">2557
<xsd:complexType>2558
<xsd:simpleContent>2559
<xsd:extension base="xsd:string">2560
<xsd:attribute name="type" type="xsd:string"/>2561

</xsd:extension>2562
</xsd:simpleContent>2563

</xsd:complexType>2564
</xsd:element>2565

2566
<xsd:element name="Description">2567
<xsd:complexType>2568
<xsd:simpleContent>2569
<xsd:extension base="xsd:string">2570
<xsd:attribute name="xml:lang" type="xsd:NMTOKEN"/>2571

</xsd:extension>2572
</xsd:simpleContent>2573

</xsd:complexType>2574
</xsd:element>2575

2576
<xsd:element name="RefToMessageId" type="xsd:string"/>2577

2578
<xsd:element name="Timestamp" type="xsd:timeInstant"/>2579

<!-- Does timeInstant conform to ISO 2601? -->2580
2581

</xsd:schema>2582

A.2 Data Type Definition 2583

This section will contain a [XML] DTD that is equivalent to the schema defined in section A.1. 2584

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 77 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix B Examples 2585

To be completed. 2586

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 78 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix C Communication Protocol Interfaces 2587

This Appendix describes how the ebXML Message Service messages are carried by 2588
Communication Protocols. Two protocols are supported: 2589

• Hypertext Transfer Protocol – HTTP/1.1, in both asynchronous and synchronous forms, 2590
and 2591

• SMTP – Simple Mail Transfer Protocol 2592

C.1 HTTP 2593

This section describes how to transport ebXML compliant messages of [HTTP]. This can work in 2594
one of the following two ways: 2595

• asynchronously, where the response to a message is sent using a separate HTTP POST, 2596
and 2597

• synchronously, where the response to a message is sent on the HTTP RESPONSE 2598
returned from an HTTP POST 2599

These are described below. 2600

C.1.1 Asynchronous HTTP 2601

In Asynchronous HTTP, all ebXML Message Service messages are carried by an HTTP Request 2602
Message (POST method). The HTTP Response Message to an HTTP Request Message has no 2603
entity body. This is illustrated by the figure below. 2604

Receiver

MSH

HTTP Handler

Sender

MSH
HTTP Handler

ebXML Message

Request Message (POST)

Response Message

ebXML Message

Request Message (POST)

Response Message

Sender
Party

Payload Data

Receiver
Party

Payload Data

Payload Data Payload Data

Receiver

MSH

HTTP Handler

Sender

MSH
HTTP Handler

ebXML Message

Request Message (POST)

Response Message

ebXML Message

Request Message (POST)

Response Message

Sender
Party

Payload Data

Receiver
Party

Payload Data

Payload Data Payload Data

 2605

Figure C.1 Asynchronous HTTP Message Flow 2606

A message that is being sent asynchronously MAY be identified by the following HTTP header: 2607
ebxmlresponse=asynchronous2608

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 79 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

If the ebXMLresponse HTTP parameter is omitted then it MUST be assumed that the response 2609
is sent asynchronously. 2610

C.1.2 Synchronous HTTP 2611

[The Synchronous HTTP section has not been agreed to by the membership of the TRP 2612
Project Team; however, it is being included to provide a basis for POC developers of MSH 2613
implementations. Implementers MUST be prepared for some change to the content of this 2614
section.] 2615

In Synchronous HTTP, one ebXML Message Service message is carried by an HTTP Request 2616
Message (POST method) with the ebXML Message that is a response to the first message sent 2617
in the HTTP Response Message to the HTTP Request Message. This is illustrated by the figure 2618
below. 2619

Receiver

MSH

HTTP Handler

Sender

MSH
HTTP Handler

ebXML Message

Request Message (POST)

Sender
Party

Payload Data

Receiver
Party

Payload Data

Payload Data Payload Data

ebXML Message

Response Message

ebXML Message

Response Message

 2620

Figure C.2 Synchronous HTTP Message Flow 2621

If a response is being sent synchronously, the following HTTP header MUST be included in the 2622
HTTP envelope: 2623
ebxmlresponse=synchronous2624

C.1.3 Use of Error Codes 2625

Communication Protocol Error Codes are used only to report errors in the communication 2626
protocol envelope (see section 7.1). A normal OK Response (e.g. an HTTP code 200) is used 2627
even if there are errors in the MIME envelope, the ebXML Header document or the payload. 2628

 2629

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 80 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

C.2 SMTP 2630

All ebXML Message Service messages are carried as mail in an [SMTP] Mail Transaction as 2631
shown in the figure below. 2632

Receiver

MSH

SMTP Handler

Sender

MSH
SMTP Handler

ebXML Message

Mail Transaction

Sender
Party

Payload Data

Receiver
Party

Payload Data

Payload Data Payload Data

ebXML Message

Mail Transaction

 2633
Figure C.3 SMTP Message Flow 2634

The Mail Transaction follows RFC 821, “SIMPLE MAIL TRANSFER PROTOCOL”, as shown in 2635
the following Figure: 2636

 sender-SMTP receiver-SMTP

MAIL FROM : <xxxx@company1.org>

250 OK

RCPT TO : <yyyy@company2.org>

250 OK

DATA

354 Start mail input ;
end with <CR/LF> . <CR/LF>

one line of message

one line of message

...

CR/LF CR/LF

250 OK

 2637

Figure C.4 SMTP Sequence 2638

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 81 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

C.3FTP 2639

This section will describe how ebXML Messages may be sent using the File 2640
Transfer protocol as defined in RFC 959 2641

This section is to be completed. 2642

C.4Communication Protocol Errors 2643

C.4.1Use of Error Codes 2644

Communication Protocol Error Codes are used only to report errors in the 2645
communication protocol envelope (see section 7.1). A normal OK 2646
Response (e.g. an HTTP code 200) is used even if there are errors in 2647
the MIME envelope, the ebXML Header document or the payload. 2648

C.4.2C.3 Communication Errors during Reliable Messaging 2649

When the Sender or the Receiver detects a transport protocol level error (such as an HTTP, 2650
SMTP or FTP error) and Reliable Messaging is being used then the appropriate transport 2651
recovery handler will execute a recovery sequence. Only if the error is unrecoverable, does 2652
Reliable Messaging recovery take place (see section 10). 2653

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 82 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix D Reliable Messaging Processing 2654

LogicRequest for MIME media type 2655

Application/Vendor Tree - vnd 2656

This section will contain non-normative reference processing logic to describe the behavior of a 2657
MSH that is taking part in reliable messaging. It’s purpose is to assist implementers in developing 2658
consistent interoperable solutions.is non-normative. It contains the information forwarded to 2659
IANA to register the MIME subtype vnd.be+xml. The information was extracted verbatim from the 2660
e-mail message forward by Dick Brooks, Group8760, on behalf of the ebXML Transportation, 2661
Routing, and Packaging Project Team. 2662

 2663
From: Dick Brooks [mailto:dick@8760.com]2664
Sent: Thursday, February 01, 2001 2:00 PM2665
To: iana@iana.org; Dick Brooks2666
Subject: Request for MIME media type Application/Vendor Tree - vnd.2667

2668
Name: Richard Brooks (on behalf of OASIS and UN/CEFACT)2669
E-mail: dick@8760.com2670
MIME media type name: Application2671
MIME subtype name: Vendor Tree - vnd.eb+xml2672
Required parameters: version2673
Optional parameters: charset2674
Encoding considerations: N/A2675

2676
Security considerations: N/A2677
Interoperability considerations: N/A2678
Published specification: Message Service Specification ebXML Transport,2679
Routing and Packaging2680
Applications that use this media: ebXML Message Handling Services2681
Additional information:2682

1. Magic number(s): N/A2683
2. File extension(s): .ebx2684
3. Macintosh file type code: N/A2685
4. Object Identifiers: N/A2686

2687
This media type is owned jointly by OASIS, UN/CEFACT and ebXML2688
Person to contact for further information:2689
1. Name: Richard Brooks2690
2. E-mail: dick@8760.com2691
Intended usage: Common2692
Identifies ebXML header documents2693
Author/Change controller:2694

Christopher Ferris chris.ferris@east.sun.com2695
Rik Drummond rvd2@worldnet.att.net2696

2697

mailto:chris.ferris@east.sun.com
mailto:rvd2@worldnet.att.net

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 83 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

2697

 2698

ebXML Transport, Routing and Packaging December 2000

Message Service Specification 0.930.92 Page 84 of 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Copyright Statement 2699

This document and translations of it may be copied and furnished to others, and derivative works 2700
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 2701
published and distributed, in whole or in part, without restriction of any kind, provided that the 2702
above copyright notice and this paragraph are included on all such copies and derivative works. 2703
However, this document itself may not be modified in any way, such as by removing the copyright 2704
notice or references to the Internet Society or other Internet organizations, except as needed for 2705
the purpose of developing Internet standards in which case the procedures for copyrights defined 2706
in the Internet Standards process must be followed, or as required to translate it into languages 2707
other than English. 2708

The limited permissions granted above are perpetual and will not be revoked by ebXML or its 2709
successors or assigns. 2710

This document and the information contained herein is provided on an "AS IS" basis and ebXML 2711
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 2712
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 2713
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 2714
PARTICULAR PURPOSE. 2715

	Status of this Document
	ebXML Participants
	Table of Contents
	Introduction
	Summary of Contents of Document
	Document Conventions
	Audience
	Caveats and Assumptions
	Related Documents

	Design Objectives
	System Overview
	What the Message Service does
	Message Service Overview

	Packaging Specification
	Introduction
	ebXML Header Envelope and ebXML Payload Envelope
	MIME usage Conventions

	ebXML Message Envelope
	Content-Type
	type Attribute
	boundary Attribute
	version Attribute

	ebXML Message Envelope Example

	ebXML Header Container
	Content-ID
	Content-Type
	version Attribute
	charset Attribute

	ebXML Header Envelope Example

	ebXML Payload Container
	Content-ID
	Content-Type
	Example of an ebXML MIME Payload Container

	Additional MIME Parameters
	Reporting MIME Errors

	ebXML Header Document
	XML Prolog
	XML Declaration
	Encoding Declaration
	Standalone Document Declaration
	Document Type Declaration

	ebXMLHeader Element
	ebXMLHeader attributes
	Namespace attribute
	version attribute

	ebXMLHeader elements
	Combining Principal Header Elements
	Manifest element
	Header element
	RoutingHeaderList element
	ApplicationHeaders element
	StatusData element
	ErrorList element
	Acknowledgment element
	Signature element
	#wildcard element content

	ebXMLHeader sample

	Manifest element
	Reference element
	Schema element
	Description element
	#wildcard element

	What References are Included in a Manifest
	Manifest Validation
	Manifest sample

	Header element
	From and To elements
	CPAId element
	ConversationId element
	Service element
	type attribute
	ebXML Message Service namespace

	Action element
	MessageData element
	MessageId element
	Timestamp element
	RefToMessageId element
	TimeToLive element

	QualityOfServiceInfo element
	deliverySemantics attribute
	messageOrderSemantics attribute
	DeliveryReceiptRequested attribute
	syncReplyMode attribute
	TimeToLive attribute

	SequenceNumber element
	Description element
	#wildcard element
	Header sample

	RoutingHeaderList element
	Routing Header Element
	reliableMessagingMethod attribute
	intermediateAckRequested attribute
	SenderURI element
	ReceiverURI element
	ErrorURI element
	Timestamp element
	SequenceNumber element
	#wildcard element
	reliableMessagingMethod attribute
	intermediateAckRequested attribute

	Single Hop Routing Header Sample
	Multi-hop Routing Header Sample

	ApplicationHeaders Element
	ApplicationHeaders sample

	StatusData Element
	ErrorList Element
	id attribute
	highestSeverity attribute
	Error element
	codeContext attribute
	errorCode attribute
	severity attribute
	location attribute
	errorMessage attribute
	softwareDetails attribute

	Examples
	errorCode values
	Reporting Errors in the ebXML Header Document
	Non-XML Document Errors

	Acknowledgment Element
	Timestamp element
	From element
	type attribute
	signed attribute

	Signature Element

	Message Service Handler Services
	Message Status Request Service
	Message Status Request Message
	Message Status Response Message
	Security Considerations

	Message Service Handler Ping Service
	Message Service Handler Ping Message
	Message Service Handler Pong Message
	Security Considerations

	Reliable Messaging
	
	Persistent Storage and System Failure
	Methods of Implementing Reliable Messaging

	ebXML Reliable Messaging Protocol
	Single-hop Reliable Messaging
	Sending Message Behavior
	Receiving Message Behavior
	Resending Lost Messages and Duplicate Filtering

	Multi-hop Reliable Messaging
	Multi-hop Reliable Messaging without Intermediate Acknowledgments
	Multi-hop Reliable Messaging with Intermediate Acknowledgments

	ebXML Reliable Messaging using Queuing Transports
	Service and Action Element Values
	Failed Message Delivery
	Reliable Messaging Parameters
	Who sets Message Service Parameters
	From Party Parameters
	Delivery Semantics
	Delivery Receipt Requested
	Sync Reply Mode
	Time To Live

	To Party Parameters
	Delivery Receipt Provided

	Sending MSH Parameters
	Reliable Messaging Method
	Intermediate Ack Requested
	Timeout Parameter
	Retries Parameter
	RetryInterval Parameter
	Deciding when to resend a message

	Receiving MSH Parameters
	Reliable Messaging Methods Supported
	PersistDuration
	MSH Time Accuracy

	Error Reporting and Handling
	Definitions
	Types of Errors
	When to generate Error Messages
	Security Considerations

	Identifying the Error Reporting Location
	Service and Action Element Values

	Security
	Security and Management
	Collaboration Protocol Agreement
	Countermeasure Technologies
	Persistent Digital Signature
	Signature Generation

	Persistent Signed Receipt
	Non-persistent Authentication
	Non-persistent Integrity
	Persistent Confidentiality
	Non-persistent Confidentiality
	Persistent Authorization
	Non-persistent Authorization
	Trusted Timestamp

	Synchronous and Asynchronous Responses
	References
	Normative References
	Non-Normative References

	Disclaimer
	Contact Information
	ebXMLHeader Schema and Data Type Definitions
	Schema Definition
	Data Type Definition

	Examples
	Communication Protocol Interfaces
	HTTP
	Asynchronous HTTP
	Synchronous HTTP
	Use of Error Codes
	SMTP
	FTP
	This section will describe how ebXML Messages may be sent using the File Transfer protocol as defined in RFC 959
	This section is to be completed.
	Communication Protocol Errors
	Use of Error Codes
	Communication Protocol Error Codes are used only to report errors in the communication protocol envelope (see section 7.1). A normal OK Response (e.g. an HTTP code 200) is used even if there are errors in the MIME envelope, the ebXML Header document or t
	Communication Errors during Reliable Messaging

	Reliable Messaging Processing LogicRequest for MIME media type Application/Vendor Tree - vnd
	Copyright Statement

