14

15
16
17
18

19
20
21
22
23

24
25
26

27
28
29

30
31

32
33
34

35

36
37
38
39
40

41
42

1 Reliable Messaging

Reliable Messaging defines an interoperable protocol such that the-any two Messaging Service

Handlers (MSH) operated-by-aFromParty-and-aTo-Party-can “reliably” exchange messages that

are sent using “reliable messaging” delivery semantics.

“Reliably” means that the From Party can be highly certain that the message sent will be
delivered to the To Party. If there is a problem in sending a message then the sender resends the
message until either the message is delivered, or the sender gives up. If the message cannot be
delivered, for example because there has been a catastrophic failure of the To Party’s system,
then the From Party is informed.

1111 Persistent Storage and System Failure

A MSH that supports Reliable Messaging MUST keep messages, and/or selected data from
these messages, that-are-sent-orreceivedreliablyin persistent storage. In this context persistent

storage is a method of storing data that does not lose information after a system failure or
interruption.

This specification recognizes that different degrees of resilience may be realized depending on
the technology that is used to persist the data. However, as a minimum, persistent storage that
has the resilience characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly
RECOMMENDED though that implementers of this specification use technology that is resilient to
the failure of any single hardware or software component.

Even after a system interruption or failure, a MSH MUST ensure that messages in persistent
storage are processed in-the-same-way-as if the system failure or interruption had not occurred.
How this is done is an implementation decision.

In order to support the filtering of duplicate messages, a Receiving MSH SHOULD, save the
Messageld in persistent storage. It is also RECOMMENDED that the following be kept in
Persistent Storage:

the complete message, at least until the information in the message has been passed to

the application or other process that needs to process it

the time the message was received, so that the information can be used to generate the

response to a Message Status Request (see section Error! Reference source not
found.Errorl Reference source not found.)

1.2 Reliable Messaging Parameters

This section describes the parameters required to control reliable messaging. This parameter
information is contained in the following:

the ebXML Message Header, or

the CPA that governs the processing of a message.

The table below indicates where these parameters may be set.

Parameter CPA Header

43
44

45
46

47
48

49
50

51

52
53
54

55
56

57
58
59
60
61
62
63
64

65

66
67
68

69

70
71

Parameter CPA Header
deliverySemantics Yes Yes
syncReplyMode Yes Yes
timeTolLive Yes Yes
reliableMessagingMethod No Yes
intermediateAckRequested<DB> No Yes
Should be just "ackRequested"

</DB>

timeout Yes No
retries Yes No
retrylnterval Yes No
reliableMessagingSupported Yes No
persistDuration Yes No

In this table, the following interpretation of the columns should be used:

1) ifthe CPA column contains a Yes then it indicates that the value that is present in the CPA
determines the processing semantics

2) ifthe CPA column contains a No then it indicates that the parameter value is never specified
in the CPA

3) ifthe Header column contains a Yesthen it indicates that the parameter value MAY be
specified in the ebXML Header document.

<DB> It is not clear what happens if a parameter is in both the CPA and the Header (parameters
deliverySemantics, syncReplyMode, timeTolLive). The above seems to suggest that if the value is
in the header then it would be ignored.</DB>

These parameters are described below.
1.2.1 Delivery Semantics

The deliverySemantics parameter may be present as either <DB>in the CPA or as ??</DB>an
attribute within the QualityOfService element of the ebXMLHeader document. The
deliverySemantics attribute takes its value <DB>Does this mean that it has exactly the same
value as the parameter in the CPA and it is copied into the header as a convenience to the MSH
instead of the MSH having to look up value in the CPA. What happens, though, if the value in the
CPA happens to be different from the value in the CPA. </DB>from the CPA that governs the
processing of a given message. See section Error! Reference source not found.Errorl
Reference source potfound- for more information.

1.2.2 Sync Reply Mode

The syncReplyMode parameter may be present as either an element within the ebXMLHeader
element or as a parameter within the CPA. See section Error! Reference source not
found.Errorl Reference source notfound. for more information.

1.2.3 TimeTo Live

The TimeTolLive element may be presented within the ebXMLHeader document see section
Error! Reference source not found.Exrrerl Reference source pnotfound- for more information.

72

73
74

75
76

77
78
79

80

8l
82
83

84
85

86
87
88
89

90
91

92
93

94
95
96

97

98
99
100

101

102
103
104
105
106

107

108
109
110
111
112

1.2.4 Reliable Messaging Method

The ReliableMessagingMethod parameter indicates the requested method for Reliable
Messaging that will be used when sending a Message. Valid values are:

eb XML in this case the ebXML Reliable Messaging Protocol as defined in section
1.3.12.21 is followed, or

Transport, in this case a reliable transport protocol is used for reliable delivery of the
message, see section 0<DB>This section has been removed therefore this is
inconsistent.</DB>.

1.2.5 Intermediate Ack Requested

The IntermediateAckRequested parameter is used by the Sending MSH to request that the
Receiving MSH that receives the Message returns an acknowledgment message with an
Acknowledgment element with a type of IntemediateAcknowledgment..

<DB>Do we define anywhere what is an acknowledgement message or do we rely on the
Glossary?</DB>

Valid values for IntermediateAckRequested are:

uUnsigned - requests that an unsigned Delivery Receipt is requested

Signed - requests that a signed Delivery Receipt is requested, or

None - indicates that no Delivery Receipt is requested.

<DB>Replace Delivery Receipt by Intermediate Acknowledgement in the above. This imistake is
also in the current version of the spec.</DB>

The default value is None.

1.2.6 Timeout Parameter

The timeout parameter is an integer value that specifies the time in < seconds DB>Perhaps this
should be an XML Schema TimeDuration. </DB>that the Sending MSH MUST wait for an
Acknowledgment Message before first resending a message to the Receiving MSH.

1.2.7 Retries Parameter

The retries Parameter is an integer value that specifies the maximum number of times a Sending

MSH SHOULD attempt to redeliver an unacknowledged or undelivered message.<DB>This
should say per Communication Protocol.</DB>

1.2.8 RetryInterval Parameter

The retryInterval parameter is an integer value specifying, in seconds, DB>Perhaps this should
be an XML Schema TimeDuration </DB>the time the Sending MSH SHOULD wait between
retries, if an Acknowledgment Message is not received.<DB>The current version says MUST
rather than SHOULD. A simple SHOULD suggests that it is OK to resend it earlier. Suggest
saying that the time is minimum that the MSH MUST wait.</DB>

1.2.9 Reliable Messaging Methods Supported

The reliableMessagingMethodsSupported parameter is a list of the methods that a MSH uses
to support Reliable Messaging. It must be a URI. The URI for the ebXML Reliable Messaging
Protocol described in section 1.3.11-2.1is
http://www.ebxml.org/namespaces/reliableMessaging <DB>This is only every used in the
CPA. Therefore it really does not need to be here.</DB>

113

114
115
116
117
118
119
120

121
122
123
124

125
126
127

128
129

130

131
132

133
134
135

136
137

138
139

140
141
142
143

144
145

146
147
148

149

1.2.10 PersistDuration

The persistDuration parameter is specified in the CPA. <DB>We don't need to say this as it is
stated in the table.</DB> It represents the minimum length of time, expressed as a [XMLSchemal
timeDuration, that data from a Message that is sent reliably, is kept in _Persistent Storage by a
MSH that receives that Message. Note that implementations may determine that a message is
persisted for longer than the time specified in persistDuration, for example in order to meet legal
requirements or the needs of a business process. This information is recorded separately within
the CPA.

<DB>There seems to have been a lot of text cut out from the description of PersistDuration.
There was a discussion on the list about how PersistDuration should described in the spec which
led to an agreed definition. We should reconsider including that text. Speciifically we should re-
insert the followin ...

"A MSH SHOULD NOT resend a message with the same Messageld to a receiving MSH if the
elapsed time indicated by persistDuration has passed since the message was first sent as the
receiving MSH will probably not treat it as a duplicate"

</DB>

11213 Methods of Implementing Reliable Messaging

Support for Reliable Messaging can be implemented in one of the following two ways:
using the ebXML Reliable Messaging protocol, or

using ebXML Header and Message structures together with commercial software
products that are designed to provide reliable delivery of messages using alternative
protocols

=<DB>=Change elsewhere</DB>

Use of alternative protocols to effect reliable delivery of messages is outside the scope of this
specification.

<DB>If we provide absolutely no guidance on how to use alternative protocols then we run the
risk of failing to get interoperability. For example, can we assume that the meaning of all the
parameters (e.g. IntermediateAckRequested) is exactly the same whether we are using the
ebXML reliable messaging protocol or not. Right?.</DB>

Each ofthese are described below-
1+21.3.1 ebXML Reliable Messaging Protocol

The ebXML Reliable Messaging Protocol described in this section MUST be followed if the
deliverySemantics parameter/element is set to OnceAndOnlyOnce and the
ReliableMessagingMethod parameter/element is set to eb XML (the default).

The ebXML Reliable Messaging Protocol is illustrated by the figure below.

150

151
152

153
154
155
156
157

158
159
160

161
162

163
164

165
166
167
168
169

170
171

From Party To Party

Application Message > Application

' 3

1. Message >

MSH < . MSH

2. Ack
Message

Acknowledgement
Message

From Party To Party

Message
being
Acknowledged

Application

T Vessage

MSH < MSH

2. Message

> Application

Acknowledgement
Message

Figure 1110-11 Indicating that a message has been received

The receipt of the acknowledgment message indicates that the-a message being-acknowledged
has been sent-successfully received, and either processed or persisted by the receiving MSH to
which reliably.the message was sent.

An acknowledgment message MUST contain a MessageData element with a RefToMessageld
that contains the same value as the Messageld element in the message being acknowledged.

190

191
192

193
194

195

196
197
198
199

200

201
202

203
204

205
206
207
208
209

210
211
212

11.111.3.1.1 Sending Message Behavior

If a MSH is given data by an application that needs to be sent reliably then the MSH MUST do the
following:

1) Create a message from components received from the application that includes:
a) deliverySemantics set to OnceAndOnlyOnce, and

b) a RoutingHeader element that identifies the sender and the receiver URIs

2) Save the message in persistent storage (see section 1.11.110.1.1)

3) Send the message {the-message beingacknowledged)-to the Receiver MSH

4) Wait for the Receiver MSH to return an acknowledgment message and, if it does not, then
resend the identical message as described in section 1.3.1.41.2.1.4102.1.3

11.1.21.3.1.2 Receiving Message Behavior

If deliverySemantics on the received message is set to OnceAndOnlyOnce then do the
following:

1) Check to see if the message is a duplicate (e.g. there is a message in persistent storage that
was received earlier that contains the same value for the Messageld)

2) If the message is not a duplicate then do the following:

a) Save the Messageld of the received message in persistent storage. As an
implementation decision, the whole message MAY be stored if there are other reasons
for doing so-
are used. </DB>

b) If the received message contains a RefToMessageld element then do the following:

i) Look for a message in persistent storage that has a Messageld that is the same as
the value of RefToMessageld on the received Message

i) If a message is found in persistent storage then mark the persisted message as
delivered

<DB>What is entirely missing from here (and | can't find it anywhere else) is the requirement
to send an acknowledgement message if the message isn't a duplicate !'! See updated

text on Serwce and Action Element Values </DB>H-d-eLn+e%e@e+pi—R—eq-u&s¢-ed45-set-te

213
214

215
216

217
218
219

220
221

222
223
224
225

226

227
228
229
230

231
232
233

234
235

236
237
238
239
240
241

242

243
244

245

246
247

248
249
250
251

252
253
254
255

256
257
258

3) If the message is a duplicate, then do the following:

a) Look in persistent storage for a response to the received message (i.e. it contains a
RefToMessageld that matches the Messageld of the received message) thatwas-most

b) If no message was found in persistent storage then ignore the received message as
either no message was generated in response to the message, or the processing of the
earlier message is not yet complete

c) If a message was found in persistent storage then resend the persisted message back to
the MSH that sent the received message.

<DB>This assumes there is only one message that has been generated and persisted as a result
of receiving an earlier message. There could be more. For example you could send an
acknowledgement message followed later by a message that contained a business response. So
you have to say either:

the first message sent in reply,
the most recent message, or
leave it undefined.

| prefer the most recent as it will be more useful to get the business/process response than the
acknowledgement.</DB>

1.3.1.3 Service and Action Element Values

<DB>Suggest renaming this to Generating an Acknowkledgement Message and including
description of how to generate an acknowledgement with precise rules on what it contains.</DB>

An Acknowledgment element can be included in an ebXMLHeader that is part of a message
that is being sent as a result of processing of an earlier message. In this case the values for the
Service and Action elements are set by the designer of the Service (see section Error!
Reference source not found.Errorl Reference source notfound.).

<DB>L ater parts of this spec indicate that an Acknowledgement element can only be used with
multi-hop. This is inconsistent. It is much simpler if the rule is if the Routing Header contains an
ackRequested set to True then return an Acknowledgement element. This apparent restriction
also complicates the use of syncReplyMode.</DB>

An Acknowledgment element also can be included in an ebXMLHeader that does not include
any results from the processing of an earlier message. In this case, the values of the Service and
Action elements MUST be set as follows:

259
260

261
262
263

264

265

266
267
268
269

270
271

272

273
274

275

276
277

278
279

280

281
282

The Service element MUST be set to:
http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment
The Action element MUST be set to the value of the type attribute in the
Acknowledgment element.<DB>This is now inconsistent as we no longer have delivery
receipts as a valid type of acknowledgement.</DB>

121.31.3.1.4 Resending Lost Messages and Duplicate Filtering

This section describes the behavior that is required by the sender and receiver of a message in
order to handle when messages are lost. A message is "lost" when a sending MSH does not
receive a response to a message. For example, it is possible that a message being

acknowledged-messagewas lost, for example:

Party A Party B

Message
Application < Acknt(’)m%ged Application
Message X
MSH > x MSH
Msg. Lost|

Figure 1110-21 Lost “Message Being-Acknowledged”

It is also possible that the Acknowledgment Message was lost, for example;—

Party A Party B
Application Application
v _|o Y

Message X >
MSH Message Y MSH
X <«
Msg. Lost @

Acknowledgement
Message

Figure 1110-32 Lost Acknowledgment Message

The rules that apply are as follows:

1) The Sending MSH MUST resend the original message if an Acknowledgment Message has
not been received from the Receiving MSH and either of the following are true:

a) The message has not yet been resent and at least the time specified in the timeout
parameter has passed since the first message was sent, or

b) The message has been resent, and the following are both true:

i) At least the time specified in the retrylnterval has passed since the last time the
message was resent, and

283
284

285
286
287

288
289
290
291
292
293
294

295

296

297

298
299
300
301
302

303
304

305
306
307
308

309
310

311
312

313
314
315
316

ii) The message has been resent less than the number of times specified in the retries
Parameter

2) If the Sending MSH does not receive an Acknowledgment Message after the maximum
number of retries, the Sending MSH SHOULD notify the application and/or system
administrator function.

3) Ifthe Sending MSH detects a communications protocol error that is unrecoverable at the
transport protocol level then the Sending MSH SHOULD first attempt to resend the message
using the same transport protocol until the number of retries has been reached, and then
again, using a different communications protocol<DB>We should allow multiple different
communication protocols and not just one. This is also in the current version of the
spec</DB>, if the CPA allows this. If these are not successful, then notify the From Party of
the failure to deliver as described in section 1.41-310.5,

1.3.2 Duplicate Message Handling

In this context:

an identical message is a message that contains the exact same ebXML Header and
ebXML Payload as the earlier message that was sent previously.

a duplicate message is a message that contains the same Messageld as an earlier
message that was received.

<DB>In the last version of the spec there was a noted disagreement between Chris and
myself around sending the most recent message. This has not been discussed and
needs to be.</DB>

Note that the Communication Protocol Envelope MAY be different. This means that the same
message MAY be sent using different communication protocols and the reliable messaging
behavior described in this section will still apply. The ability to use alternative communication
protocols is specified in the CPA and is an OPTIONAL implementation specific feature.

Party A Party B

MSH D escarex MSH
Application [€~~~ S5l ————P-~:-------»€P Application

o

1 - -
Timeout ! x < Message \(? h
" Msg| Lost @
\‘ _ | Mgssage ‘
Nig x

v

Timpdu’t]! Msg. Lost

. R Message X
L] G |

"= -+ Ignore
< < - Duplicate
Message Y @

Figure 1110-413 Resending LestUnacknowledged Messages

to duplicate message receipt<DB>I think the phrase " that require reliable delivery as regards to

317
318

319
320
321

322
323
324
325

326
327
328
329

330
331

332
333

334
335
336
337
338
339
340
341
342
343

344
345
346
347

348

349
350
351

352
353

354
355

356
357
358

359

duplicate message receipt” is vague. Suggest change to "that are sent with deliverySemantics
of OnceAndOnlyOnce. </DB>. Specifically:

1) The sender of the message being-acknowledged-(e.g. Party A) MUST re-send the identical
message message-to-the To Party MSH (e g Party B) if no Acknowledgment Message is

received

2) The recipient of the message being-acknowledged(e.g. Party B), when it receives a duplicate
message, MUST re-send to the sender of the message being-acknowledged-(e.g. Party A), a
message identical to the mostrecent-message that was originally sent to-therecipientin
response to the duplicate message {-e—RParty-A)

3)The recipient of the-a duplicate message being-acknowledged (e-g-—Party A} MUST ighore
duplicate-messages-and-notNOT forward them a second time to the application_-the-next

MSH <DB>pext MSH-is multi-hopshould-not be here</DB=>0r other process that ultimately
needs-toreceive-themwould normally be expected to process received messages.

360

361
362

363

Party A Party B Party C Party D

Message
being
Acknowledged

o Routing o
Application| Application Application Application

2 o ;! Nl .o | ¢

Routing

A4

MsH|q o S T e S NV e

Message Y

Message Y

Acknowledgement
Message

364
365

366
367
368
369
370
371

372

373
374
375
376

377

378
379
380

381
382
383
384

385
386

387
388
389

390
391
392

393
394

395
396

397
398

399
400

401
402

403

404
405
406

407
408
409
410

411

412
413

414
415

416
417
418
419
420
421

Multi-hop Reliable Messaging with Intermediate Acknowledgments is similar to Multi-hop Reliable
Messaging without Intermediate Acknowledgment except that any of the Parties that are
transmitting a Message can request that the recipient return an Intermediate Acknowledgment.

<DB>The above paragraph doesn't make sense now as:

1) Multi-hop messaqging without intermediate acks has been removed

2) Delivery Receipt has been removed so that intermediate acks is now only acks.</DB>

This is illustrated by the diagram below.

Party A Party B Party C Party D
o Routing Routing o
Application Application Message Application Application
¢ @ Message X f E @ Message X z E @ X t
e -{——-- P - -{———-- P -
> <« MSH
Message T L Message Y
(IntermediateAck o (Delivery Receipt)
MSH MSH | | MSH Message Y MSH+[MSH
(Delivery Receipt) e
Message Y O - ~ T AcknowledgenirD
(Intermedite Ack) Message
Party A Party B Party C Party D
o Routing Message Routing -
Application Application Acknowledged Application Application
t @ Message X f x @ Message X f x @ Message X ~ t
¢ ol |- MSH
Message T (3 e Message Y (5 —
(IntermediateAck L. (Delivery Receipt)
MSH MSH| | MSH Message Y MSH{-{MSH
(Delivery Receipt) - -7

Message Y

O Message U T
Z (Intermediate Ack)

Acknowledgem
Message

"

Figure 1110-61 Multi-hop Reliable Messaging with-lntermediate- Acknowledgments

<CBF>The image above needs to be fixed so that delivery receipt is not included.

Intermediate acks only</CBF>

422
423
424
425
426
427
428
429
430
431

The rules that apply to Multi-hop Reliable Messaging with-latermediate-Acknowledgment-are as

follows:
4. Any Party that is sending a message can request that the recipient send an

Acknowledgment Message that-is-an-lntermediate Acknowledgment by setting the
IntermediateAckRequested of the RoutingHeader for the hop to Sighed or Unsigned.

a MSH that is not the To Party receives a message that requires an Intermediate

Acknowledqment then: the MSH MUST return an Acknowledqment Message with: {e-g-

i) The Service and Action elements set as in defined in section 1.11.1104

i) The From element contains the ReceiverURI from the last RoutingHeader in the
message that has just been received

iii) The To element contains the SenderURI from the last RoutingHeader in the
message that has just been received

iv) a RefToMessageld element that contains the Messageld of the message being
acknowledged

v) aQualityOfServicelnfo element with deliverySemantics set to

OnceAndOnlyOnceBestEffort

<DB>This is now vague as the sender of a message may not know in advance whether they are
sending a message to an intermediary</DB>

467
468
469

470

471
472
473

474
475
476
477
478
479
480

481
482

483

484
485
486
487

488
489
490
491

492
493

494
495

496
497
498
499
500

501
502

1.51.4 Failed Message Delivery

Itispossible;In the event that asome actor—i<DB>Actor is not used as a term anywhere else in
the spec. Do we really want to introduce it? </DB> is involved, in some capacity, in the delivery of
a message has determined that -Message cannot-be delivera messageed cannot be delivered to
; - nation_Thi he oithor:

when-the To Party MSH cannot deliverthe message-to-the aApplication or other process that

needs-ithas been designated to process the message,—o ¢

Party A Party B Party C Party D

o Routing Message Routing o
Application Application et Application Application
t @ N X f x @ N X f x @ Message X ~ t

“ | .3 MSH
¢ <«
< Message T (2 x(lmgﬁgf:;g‘eezck 4 Message Y @
(IntermediateAck kg. Lost (Delivery Receipt)
MSH MSH| | MSH MSH| | MSH
Acknowledgement
Message

In-both-these circumstances-the MSHthat actor that detects the problem MUST SHOULD send a
delivery failure notification message to the From Party that sent the message being
acknowledged-message {via-the Intermediate Party if required). The delivery failure notification

message contains:
a From Party that identifies the Party that detected the problem

a To Party that identifies the From Party that created the message that could not be
delivered

503
504

505
506

507

508
509
510
511
512
513
514

515

516
517

518
519
520
521
522
523

524

525
526

527

528

529
530

531

532
533
534
535
536

found.Errorl Reference sourcenotfound-11.5

a QualityOfServicelnfo element with deliverySemantics set to the same value as the
deliverySemantics on the message that could not be delivered

an Error element with a severity of:

Error if the Party that detected the problem could not even transmit the message
(e.g. Transmission 3 was impossible)<DB>There is now no diagram, so we need to ‘

a Service element and Action element set as described in Error! Reference source not |

change this.</DB>

Warning if the message (e.g. Message X in Transmission 3) was transmitted, but no
acknowledgment was received. This means that the message probably was not delivered
although there is a small probability that it was

an ErrorCode of DeliveryFailure

Party A Party B Party C Party D
Routing Message Routing
icati L eing =R 8]
Application Application Acknowledged Application Application
t @. lessage X f & @ Message X f & @ Message X 1}
= ; " MSH
< < h: < & <
(Intgemsgggteelck@ "\ - ngLéI;tgAremsesr%gfeXck 4 (Demissa'g:;ipt)(g
MSH Message U @ MSH || MSH MSH| | MSH
4 Error=DeliveryFailed) Timegut "
& Delivery Acknowledgement
B Message V T Failed !! Message
(IntermediateAck)

537
538

539
540

541
542

561

562
563
564

565

566
567
568

569

570
571

572

573
574

575
576

577

578
579
580

581
582
583
584

585
586
587
588

589
590

591

592
593

594
595

596
597

598

599
600
601

602
603
604
605
606

607

608
609
610

611

612
613
614

615

616
617

618

619
620

621
622

623

624
625

626
627

628
629

630
631

632
633

634
635

