
1 Reliable Messaging 1

[The Reliable Messaging section has not been agreed to by the membership of the TRP 2
Project Team; however, it is being included to provide a basis for POC developers of MSH 3
implementations. Implementers MUST be prepared for some change to the content of this 4
section.] 5

Reliable Messaging defines an interoperable protocol such that the any two Messaging Service 6
Handlers (MSH) operated by a From Party and a To Party can “reliably” exchange messages that 7
are sent using “reliable messaging” delivery semantics. 8

“Reliably” means that the From Party can be highly certain that the message sent will be 9
delivered to the To Party. If there is a problem in sending a message then the sender resends the 10
message until either the message is delivered, or the sender gives up. If the message cannot be 11
delivered, for example because there has been a catastrophic failure of the To Party’s system, 12
then the From Party is informed. 13

1.1.11.1 Persistent Storage and System Failure 14

A MSH that supports Reliable Messaging MUST keep messages, and/or selected data from 15
these messages, that are sent or received reliably in persistent storage. In this context persistent 16
storage is a method of storing data that does not lose information after a system failure or 17
interruption. 18

This specification recognizes that different degrees of resilience may be realized depending on 19
the technology that is used to persist the data. However, as a minimum, persistent storage that 20
has the resilience characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly 21
RECOMMENDED though that implementers of this specification use technology that is resilient to 22
the failure of any single hardware or software component. 23

Even after a system interruption or failure, a MSH MUST ensure that messages in persistent 24
storage are processed in the same way as if the system failure or interruption had not occurred. 25
How this is done is an implementation decision. 26

In order to support the filtering of duplicate messages, a Receiving MSH SHOULD, save the 27
MessageId in persistent storage. It is also RECOMMENDED that the following be kept in 28
Persistent Storage: 29

• the complete message, at least until the information in the message has been passed to 30
the application or other process that needs to process it 31

• the time the message was received, so that the information can be used to generate the 32
response to a Message Status Request (see section Error! Reference source not 33
found.Error! Reference source not found.) 34

1.2 Reliable Messaging Parameters 35

This section describes the parameters required to control reliable messaging. This parameter 36
information is contained in the following: 37

• the ebXML Message Header, or 38

• the CPA that governs the processing of a message. 39

 40

The table below indicates where these parameters may be set. 41
 42

Parameter CPA Header

Parameter CPA Header

deliverySemantics Yes Yes

syncReplyMode Yes Yes

timeToLive Yes Yes

reliableMessagingMethod No Yes

intermediateAckRequested<DB>
Should be just "ackRequested"
</DB>

No Yes

timeout Yes No

retries Yes No

retryInterval Yes No

reliableMessagingSupported Yes No

persistDuration Yes No

 43

In this table, the following interpretation of the columns should be used: 44

1) if the CPA column contains a Yes then it indicates that the value that is present in the CPA 45
determines the processing semantics 46

2) if the CPA column contains a No then it indicates that the parameter value is never specified 47
in the CPA 48

3) if the Header column contains a Yes then it indicates that the parameter value MAY be 49
specified in the ebXML Header document. 50

 51

<DB> It is not clear what happens if a parameter is in both the CPA and the Header (parameters 52
deliverySemantics, syncReplyMode, timeToLive). The above seems to suggest that if the value is 53
in the header then it would be ignored.</DB> 54

These parameters are described below. 55

1.2.1 Delivery Semantics 56

The deliverySemantics parameter may be present as either <DB>in the CPA or as ??</DB>an 57
attribute within the QualityOfService element of the ebXMLHeader document. The 58
deliverySemantics attribute takes its value <DB>Does this mean that it has exactly the same 59
value as the parameter in the CPA and it is copied into the header as a convenience to the MSH 60
instead of the MSH having to look up value in the CPA. What happens, though, if the value in the 61
CPA happens to be different from the value in the CPA. </DB>from the CPA that governs the 62
processing of a given message. See section Error! Reference source not found.Error! 63
Reference source not found. for more information. 64

1.2.2 Sync Reply Mode 65

The syncReplyMode parameter may be present as either an element within the ebXMLHeader 66
element or as a parameter within the CPA. See section Error! Reference source not 67
found.Error! Reference source not found. for more information. 68

1.2.3 Time To Live 69

The TimeToLive element may be presented within the ebXMLHeader document see section 70
Error! Reference source not found.Error! Reference source not found. for more information. 71

1.2.4 Reliable Messaging Method 72

The ReliableMessagingMethod parameter indicates the requested method for Reliable 73
Messaging that will be used when sending a Message. Valid values are: 74

• ebXML in this case the ebXML Reliable Messaging Protocol as defined in section 75
1.3.11.2.1 is followed, or 76

• Transport, in this case a reliable transport protocol is used for reliable delivery of the 77
message, see section 0<DB>This section has been removed therefore this is 78
inconsistent.</DB>. 79

1.2.5 Intermediate Ack Requested 80

The IntermediateAckRequested parameter is used by the Sending MSH to request that the 81
Receiving MSH that receives the Message returns an acknowledgment message with an 82
Acknowledgment element with a type of IntemediateAcknowledgment.. 83

<DB>Do we define anywhere what is an acknowledgement message or do we rely on the 84
Glossary?</DB> 85

Valid values for IntermediateAckRequested are: 86

• Unsigned - requests that an unsigned Delivery Receipt is requested 87

• Signed - requests that a signed Delivery Receipt is requested, or 88

• None - indicates that no Delivery Receipt is requested. 89

<DB>Replace Delivery Receipt by Intermediate Acknowledgement in the above. This imistake is 90
also in the current version of the spec.</DB> 91

The default value is None. 92

1.2.6 Timeout Parameter 93

The timeout parameter is an integer value that specifies the time in < seconds DB>Perhaps this 94
should be an XML Schema TimeDuration. </DB>that the Sending MSH MUST wait for an 95
Acknowledgment Message before first resending a message to the Receiving MSH. 96

1.2.7 Retries Parameter 97

The retries Parameter is an integer value that specifies the maximum number of times a Sending 98
MSH SHOULD attempt to redeliver an unacknowledged or undelivered message.<DB>This 99
should say per Communication Protocol.</DB> 100

1.2.8 RetryInterval Parameter 101

The retryInterval parameter is an integer value specifying, in seconds, DB>Perhaps this should 102
be an XML Schema TimeDuration </DB>the time the Sending MSH SHOULD wait between 103
retries, if an Acknowledgment Message is not received.<DB>The current version says MUST 104
rather than SHOULD. A simple SHOULD suggests that it is OK to resend it earlier. Suggest 105
saying that the time is minimum that the MSH MUST wait.</DB> 106

1.2.9 Reliable Messaging Methods Supported 107

The reliableMessagingMethodsSupported parameter is a list of the methods that a MSH uses 108
to support Reliable Messaging. It must be a URI. The URI for the ebXML Reliable Messaging 109
Protocol described in section 1.3.11.2.1 is 110
http://www.ebxml.org/namespaces/reliableMessaging <DB>This is only every used in the 111
CPA. Therefore it really does not need to be here.</DB> 112

1.2.10 PersistDuration 113

The persistDuration parameter is specified in the CPA. <DB>We don't need to say this as it is 114
stated in the table.</DB> It represents the minimum length of time, expressed as a [XMLSchema] 115
timeDuration, that data from a Message that is sent reliably, is kept in Persistent Storage by a 116
MSH that receives that Message. Note that implementations may determine that a message is 117
persisted for longer than the time specified in persistDuration, for example in order to meet legal 118
requirements or the needs of a business process. This information is recorded separately within 119
the CPA. 120

<DB>There seems to have been a lot of text cut out from the description of PersistDuration. 121
There was a discussion on the list about how PersistDuration should described in the spec which 122
led to an agreed definition. We should reconsider including that text. Speciifically we should re-123
insert the followin ... 124

"A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the 125
elapsed time indicated by persistDuration has passed since the message was first sent as the 126
receiving MSH will probably not treat it as a duplicate" 127

</DB> 128

 129

1.1.21.3 Methods of Implementing Reliable Messaging 130

Support for Reliable Messaging can be implemented in one of the following two ways: 131
• using the ebXML Reliable Messaging protocol, or 132
• using ebXML Header and Message structures together with commercial software 133

products that are designed to provide reliable delivery of messages using alternative 134
protocols 135

.<DB>Change elsewhere</DB> 136

 137

Use of alternative protocols to effect reliable delivery of messages is outside the scope of this 138
specification. 139

<DB>If we provide absolutely no guidance on how to use alternative protocols then we run the 140
risk of failing to get interoperability. For example, can we assume that the meaning of all the 141
parameters (e.g. IntermediateAckRequested) is exactly the same whether we are using the 142
ebXML reliable messaging protocol or not. Right?.</DB> 143

Each of these are described below. 144

1.21.3.1 ebXML Reliable Messaging Protocol 145

The ebXML Reliable Messaging Protocol described in this section MUST be followed if the 146
deliverySemantics parameter/element is set to OnceAndOnlyOnce and the 147
ReliableMessagingMethod parameter/element is set to ebXML (the default). 148

The ebXML Reliable Messaging Protocol is illustrated by the figure below. 149

To Party

MSH

Application

From Party

MSH
1. Message

2. Ack
Message

Application Message

Acknowledgement
Message

150
To Party

MSH

Application

From Party

MSH
1. Message

2. Message

Application
Message

being
Acknowledged

Acknowledgement
Message

 151

Figure 1110-11 Indicating that a message has been received 152

The diagram above illustrates two terms that are used in the remainder of this section: 153
? message being acknowledged. This is the Message that needs to be sent reliably and 154

therefore needs to be acknowledged 155
? acknowledgment message. This is the message that acknowledges that the message being 156

acknowledged has been received. 157

The receipt of the acknowledgment message indicates that the a message being acknowledged 158
has been sent successfully received, and either processed or persisted by the receiving MSH to 159
which reliably.the message was sent. 160

An acknowledgment message MUST contain a MessageData element with a RefToMessageId 161
that contains the same value as the MessageId element in the message being acknowledged. 162

 163

 164

A Message can be sent reliably either over: 165
? a Single-hop i.e. the sending of a message directly from the From Party’s MSH to the To 166

Party’s MSH without passing through any intermediate MSHs. 167
? Multi-hops i.e. the sending of a message indirectly from the From Party’s MSH to the To 168

Party’s MSH via one or more intermediate MSHs. 169

Single-hop Reliable Messaging is described first followed by Multi-hop Reliable Messaging. Note 170
that Multi-hop Reliable Messaging is an extension of Single-hop reliable Messaging. 171

1.1.1Single-hop Reliable Messaging 172

This section describes the REQUIRED behavior of a Message Service Handler (MSH) that is 173
sending and/or receiving messages that support the ebXML Reliable Messaging Protocol. 174

1.1.1.11.3.1.1 Sending Message Behavior 175

If a MSH is given data by an application that needs to be sent reliably then the MSH MUST do the 176
following: 177

1) Create a message from components received from the application that includes: 178

a) deliverySemantics set to OnceAndOnlyOnce, and 179

b) a RoutingHeader element that identifies the sender and the receiver URIs 180

2) Save the message in persistent storage (see section 1.11.110.1.1) 181

3) Send the message (the message being acknowledged) to the Receiver MSH 182

4) Wait for the Receiver MSH to return an acknowledgment message and, if it does not, then 183
resend the identical message as described in section 1.3.1.41.2.1.410.2.1.3 184

It is RECOMMENDED that messages that are sent reliably include deliveryReceiptRequested 185
set to Signed or UnSigned. 186

If the message does not need to be sent reliably, then deliverySemantics MUST be set to 187
BestEffort (the default). 188

 189

1.1.1.21.3.1.2 Receiving Message Behavior 190

If deliverySemantics on the received message is set to OnceAndOnlyOnce then do the 191
following: 192

1) Check to see if the message is a duplicate (e.g. there is a message in persistent storage that 193
was received earlier that contains the same value for the MessageId) 194

2) If the message is not a duplicate then do the following: 195

a) Save the MessageId of the received message in persistent storage. As an 196
implementation decision, the whole message MAY be stored if there are other reasons 197
for doing so.<DB>Need to re-look at how duplicates are detected if sequence numbers 198
are used. </DB> 199

b) If the received message contains a RefToMessageId element then do the following: 200

i) Look for a message in persistent storage that has a MessageId that is the same as 201
the value of RefToMessageId on the received Message 202

ii) If a message is found in persistent storage then mark the persisted message as 203
delivered 204

<DB>What is entirely missing from here (and I can't find it anywhere else) is the requirement 205
to send an acknowledgement message if the message isn't a duplicate !!! See updated 206
text on Service and Action Element Values </DB>If deliveryReceiptRequested is set to 207
Signed or UnSigned then create an Acknowledgment element with type set to 208
DeliveryReceipt that identifies the received message 209

d)If syncReplyMode is set to True then pass the data in the received message to the 210
application or other process that needs to process it and wait for the application to 211
produce a response. 212

e)If deliveryReceiptRequested is set to Signed or UnSigned, or syncReplyMode is set to 213
True then do the following: 214

i)Create a RoutingHeader element that identifies the sender and the receiver URIs 215

ii)Set the RefToMessageId to the value of the MessageId in the received message 216

iii)Create a message from the response generated by the application (if any), the 217
Acknowledgment element (if any) and the RoutingHeader that includes 218
deliverySemantics set to OnceAndOnlyOnce 219

iv)Save the message in persistent storage for later resending 220

v)c) Send the message back to the Sending MSH 221

f)If syncReplyMode is set to False then pass the data in the received message to the 222
application or other process that needs to process it. Note that, depending on the 223
application, this can result in the application generating another message to be sent (see 224
previous section). 225

3) If the message is a duplicate, then do the following: 226

a) Look in persistent storage for a response to the received message (i.e. it contains a 227
RefToMessageId that matches the MessageId of the received message) that was most 228
recently sent to the MSH that sent the received message (i.e. it has a RoutingHeader 229
element with the greatest value of the Timestamp) 230

b) If no message was found in persistent storage then ignore the received message as 231
either no message was generated in response to the message, or the processing of the 232
earlier message is not yet complete 233

c) If a message was found in persistent storage then resend the persisted message back to 234
the MSH that sent the received message. 235

<DB>This assumes there is only one message that has been generated and persisted as a result 236
of receiving an earlier message. There could be more. For example you could send an 237
acknowledgement message followed later by a message that contained a business response. So 238
you have to say either: 239

• the first message sent in reply, 240
• the most recent message, or 241
• leave it undefined. 242

I prefer the most recent as it will be more useful to get the business/process response than the 243
acknowledgement.</DB> 244

1.3.1.3 Service and Action Element Values 245

<DB>Suggest renaming this to Generating an Acknowkledgement Message and including 246
description of how to generate an acknowledgement with precise rules on what it contains.</DB> 247

An Acknowledgment element can be included in an ebXMLHeader that is part of a message 248
that is being sent as a result of processing of an earlier message. In this case the values for the 249
Service and Action elements are set by the designer of the Service (see section Error! 250
Reference source not found.Error! Reference source not found.). 251

<DB>Later parts of this spec indicate that an Acknowledgement element can only be used with 252
multi-hop. This is inconsistent. It is much simpler if the rule is if the Routing Header contains an 253
ackRequested set to True then return an Acknowledgement element. This apparent restriction 254
also complicates the use of syncReplyMode.</DB> 255

An Acknowledgment element also can be included in an ebXMLHeader that does not include 256
any results from the processing of an earlier message. In this case, the values of the Service and 257
Action elements MUST be set as follows: 258

• The Service element MUST be set to: 259
http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment 260

• The Action element MUST be set to the value of the type attribute in the 261
Acknowledgment element.<DB>This is now inconsistent as we no longer have delivery 262
receipts as a valid type of acknowledgement.</DB> 263

 264

1.2.1.31.3.1.4 Resending Lost Messages and Duplicate Filtering 265

This section describes the behavior that is required by the sender and receiver of a message in 266
order to handle when messages are lost. A message is "lost" when a sending MSH does not 267
receive a response to a message. For example, it is possible that a message being 268
acknowledged messagewas lost, for example: 269

û
Msg. Lost

Party B

MSH

Application

Party A

MSH
Message X

Application
Message

being
Acknowledged

1

 270

Figure 1110-21 Lost “Message Being Acknowledged” 271

It is also possible that the Acknowledgment Message was lost, for example: ... 272

û
Msg. Lost

Party B

MSH

Application

Party A

MSH
Message X

Application

Message Y

1

2

Acknowledgement
Message

 273

Figure 1110-32 Lost Acknowledgment Message 274

The rules that apply are as follows: 275

1) The Sending MSH MUST resend the original message if an Acknowledgment Message has 276
not been received from the Receiving MSH and either of the following are true: 277

a) The message has not yet been resent and at least the time specified in the timeout 278
parameter has passed since the first message was sent, or 279

b) The message has been resent, and the following are both true: 280

i) At least the time specified in the retryInterval has passed since the last time the 281
message was resent, and 282

ii) The message has been resent less than the number of times specified in the retries 283
Parameter 284

2) If the Sending MSH does not receive an Acknowledgment Message after the maximum 285
number of retries, the Sending MSH SHOULD notify the application and/or system 286
administrator function. 287

3) If the Sending MSH detects a communications protocol error that is unrecoverable at the 288
transport protocol level then the Sending MSH SHOULD first attempt to resend the message 289
using the same transport protocol until the number of retries has been reached, and then 290
again, using a different communications protocol<DB>We should allow multiple different 291
communication protocols and not just one. This is also in the current version of the 292
spec</DB>, if the CPA allows this. If these are not successful, then notify the From Party of 293
the failure to deliver as described in section 1.41.310.5. 294

1.3.2 Duplicate Message Handling 295

 296

In this context: 297
• an identical message is a message that contains the exact same ebXML Header and 298

ebXML Payload as the earlier message that was sent previously. 299
• a duplicate message is a message that contains the same MessageId as an earlier 300

message that was received. 301
• <DB>In the last version of the spec there was a noted disagreement between Chris and 302

myself around sending the most recent message. This has not been discussed and 303
needs to be.</DB> 304

Note that the Communication Protocol Envelope MAY be different. This means that the same 305
message MAY be sent using different communication protocols and the reliable messaging 306
behavior described in this section will still apply. The ability to use alternative communication 307
protocols is specified in the CPA and is an OPTIONAL implementation specific feature. 308

 309

 310

Party BParty A

MSH MSHMessage X

Message Yû
Msg. Lost

Message X

Message X

Message Y

û
Msg. Lost

Timeout !!

Timeout !!

Ignore
Duplicate

Application Application
1

2

3

4

5

 311

Figure 1110-413 Resending Lost Unacknowledged Messages 312

The diagram above shows the behavior that MUST be followed by the sender of the message 313
being acknowledged (e.g. Message X) and the acknowledgment message (e.g. Message Y). 314
Specifically:the sending and receiving MSH for messages that require reliable delivery as regards 315
to duplicate message receipt<DB>I think the phrase " that require reliable delivery as regards to 316

duplicate message receipt" is vague. Suggest change to "that are sent with deliverySemantics 317
of OnceAndOnlyOnce. </DB>. Specifically: 318

1) The sender of the message being acknowledged (e.g. Party A) MUST re-send the identical 319
message message to the To Party MSH (e.g. Party B) if no Acknowledgment Message is 320
received 321

2) The recipient of the message being acknowledged (e.g. Party B), when it receives a duplicate 322
message, MUST re-send to the sender of the message being acknowledged (e.g. Party A), a 323
message identical to the most recent message that was originally sent to the recipientin 324
response to the duplicate message (i.e. Party A) 325

3)The recipient of the a duplicate message being acknowledged (e.g. Party A) MUST ignore 326
duplicate messages and not NOT forward them a second time to the application , the next 327
MSH <DB>next MSH is multi-hop, should not be here. </DB>or other process that ultimately 328
needs to receive themwould normally be expected to process received messages. 329

3) 330

 331

<DB>The above also includes recipient behavior which is not part of sending behavior. Should be 332
in a separate section. </DB> 333

In this context: 334
? an identical message is a message that contains, apart from perhaps an additional 335

RoutingHeader element, the same ebXML Header and ebXML Payload as the earlier 336
message that was sent. 337

? a duplicate message is a message that contains the same MessageId as an earlier 338
message that was received. 339

? the most recent message is the message with the latest Timestamp in the MessageData 340
element that has the same RefToMessageId as the duplicate message that has just 341
been received.<DB>Chris Ferris, disagrees with resending the latest message. DB & CF 342
need to go through this. </DB> 343

Note that the Communication Protocol Envelope MAY be different. This means that the same 344
message MAY be sent using different communication protocols and the reliable messaging 345
behavior described in this section will still apply. The ability to use alternative communication 346
protocols is specified in the CPA. 347

1.1.21.3.2.1 Multi-hop Reliable Messaging 348

Multi-hop reliable Messaging can occur either: 349
? without Intermediate Acknowledgment, or 350
? with Intermediate Acknowledgments 351

One reason for using Multi-hop Reliable Messaging with Intermediate Acknowledgments is when 352
the From Party that is sending a message is confident that the total time taken for ... 353

? the message being acknowledged to be sent to the To Party, and 354
? the acknowledgment message to be returned 355

... is likely to result in the From Party resending the message being acknowledged. <DB>Chris 356
thinks this is superfluous, David thinks it useful as it explains why you should do multi-hop and 357
helps an implementer decide when to use it. This requires further discussion. </DB> 358

Each of these is described below. 359

1.1.1.1Multi-hop Reliable Messaging without Intermediate Acknowledgments 360

Multi-hop Reliable Messaging without Intermediate Acknowledgment is identified by the 361
IntermediateAckRequested of the Routing Header for the hop being set to False (the default). 362

The overall message flow is illustrated by the diagram below. 363

Party A

MSH
Message X

Application

Party B

MSH

Routing
Application

MSH
Message Y

Message X

Message Y

1
2

56

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH
Message X

Message Y

3

4

Message
being

Acknowledged

Acknowledgement
Message

 364

Figure 10-1 Multi-hop Reliable Messaging without Intermediate Acknowledgments 365

This is essentially the same as Single-hop Reliable Messaging except that the Message passes 366
through multiple intermediate parties. This means that: 367

? the From Party (e.g. Party A) and the To Party (e.g. Party D) are the only parties that adopt 368
the Reliable Messaging behavior described in this section 369

? the intermediate parties (e.g. Parties B and C), just forward the messages they receive, 370
they do not undertake any Reliable Messaging behavior. 371

This is described in more detail below: 372

1)The From Party and the To Party adopt the sending message and receiving message behavior 373
described in sections 10.2.1.1 and 10.2.1.2 except that the From Party MSH (e.g. Party A) 374
sends to an Intermediate Party (e.g. Party B) a message (the message being acknowledged) 375
e.g. Message X in transmission 1, that contains 376

a)a QualityOfServiceInfo element with deliverySemantics set to OnceAndOnlyOnce 377

b)a RoutingHeader element that contains the SenderURI of the sender (e.g. the URL for 378
Party A’s MSH) and the ReceiverURI of the next recipient of the message (e.g. the URL 379
of Party B’s MSH) 380

2)Once the Intermediate Party (e.g. Party B or Party C) receives the message, they determine its 381
next destination (in the example above this could be done by the Routing Application) and 382
forward the message (e.g. Transmission 2 of Message X) to the next Party (e.g. either Party 383
C or Party D). Before sending the message they do the following: 384

a)transfer elements in the ebXML Header and Payload unchanged from the inbound 385
message to the outbound message except that, they 386

b)add a RoutingHeader element to the RoutingHeaderList that contains the SenderURI of 387
the next party to receive the message (e.g. the URL for Party C’s or Party D’s MSH) and 388
the ReceiverURI (e.g. the URL for Party B’s or Party C’s MSH) 389

3)If the Sending MSH (either at the From Party or at an Intermediate Party) does not receive an 390
Acknowledgment Message after the maximum number of retries, the Sending MSH SHOULD 391
notify the following of the delivery failure: 392

The application and/or system administrator function if the Sending MSH is the From Party 393
MSH, or 394

The Sending MSH of the From Party, if the Sending MSH is operated by an Intermediate 395
Party (see section 10.5) 396

4)The previous step then repeats until eventually the message (e.g. Message X) reaches its final 397
destination at the To Party (e.g. Party D) 398

5)Once the To Party receives the message (i.e. the message being acknowledged) they return an 399
acknowledgment message to the From Party through the Intermediate Parties.) 400

6)Steps 2 and 3 above then repeat until the acknowledgment message reaches the To Party (e.g. 401
Party A) 402

1.2.2.2Multi-hop Reliable Messaging with Intermediate Acknowledgments 403

Multi-hop Reliable Messaging with Intermediate Acknowledgments is similar to Multi-hop Reliable 404
Messaging without Intermediate Acknowledgment except that any of the Parties that are 405
transmitting a Message can request that the recipient return an Intermediate Acknowledgment. 406

<DB>The above paragraph doesn't make sense now as: 407

1) Multi-hop messaging without intermediate acks has been removed 408

2) Delivery Receipt has been removed so that intermediate acks is now only acks.</DB> 409

This is illustrated by the diagram below. 410

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message Y

Message X

Message Y
(Delivery Receipt)

1 2

6

8

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X

Message Y
(Delivery Receipt)

4

5

Message

Acknowledgement
Message

Message T
(IntermediateAck)

Message U
(Intermediate Ack)

3

7
411

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message Y

Message X

Message Y
(Delivery Receipt)

1 2

6

8

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X

Message Y
(Delivery Receipt)

4

5

Message
being

Acknowledged

Acknowledgement
Message

Message T
(IntermediateAck)

Message U
(Intermediate Ack)

3

7
 412

Figure 1110-61 Multi-hop Reliable Messaging with Intermediate Acknowledgments 413

<CBF>The image above needs to be fixed so that delivery receipt is not included. 414
Intermediate acks only</CBF> 415

The main difference between Multi-Hop Reliable Messaging with Intermediate Acknowledgments 416
and the without is: 417

? any party may request an intermediate acknowledgment 418
? any party that either sends or receives a message that requests an intermediate 419

acknowledgment must adopt the reliable messaging behavior even if the 420
QualityOfServiceInfo element indicates otherwise. 421

The rules that apply to Multi-hop Reliable Messaging with Intermediate Acknowledgment are as 422
follows: 423

1)• Any Party that is sending a message can request that the recipient send an 424
Acknowledgment Message that is an Intermediate Acknowledgment by setting the 425
IntermediateAckRequested of the RoutingHeader for the hop to Signed or Unsigned. 426

• a MSH that is not the To Party receives a message that requires an Intermediate 427
Acknowledgment then: the MSH MUST return an Acknowledgment Message with: (e.g. 428
Transmission 2 of Message X, or Transmission 6 of Message Y) 429

2)If a MSH that is not the To Party receives a message that requires an Intermediate 430
Acknowledgment (e.g. Transmission 2 of Message X, or Transmission 6 of Message Y) then: 431

a)If the MSH can identify itself as the ReceiverURI in the RoutingHeader for the hop, and an 432
Intermediate Acknowledgment is requested, then the MSH must return an Acknowledgment 433
Message (e.g. Transmission 3 of Message T, or Transmission 7 of Message U) with: 434

i) The Service and Action elements set as in defined in section 1.11.110.4 435

ii) The From element contains the ReceiverURI from the last RoutingHeader in the 436
message that has just been received 437

iii) The To element contains the SenderURI from the last RoutingHeader in the 438
message that has just been received 439

iv) a RefToMessageId element that contains the MessageId of the message being 440
acknowledged 441

v) a QualityOfServiceInfo element with deliverySemantics set to 442
OnceAndOnlyOnceBestEffort 443

<DB>This is now vague as the sender of a message may not know in advance whether they are 444
sending a message to an intermediary</DB> 445

vi)an Acknowledgment element with type set to IntermediateAck 446

vii)a RoutingHeader element that contains the SenderURI of the sender (e.g. the URL for Party 447
C’s or Party B’s MSH) and the ReceiverURI of the next recipient of the message (e.g. the 448
URL of Party B’s or Party C’s MSH) 449

3)If a MSH that is the To Party receives a message and it requires an Intermediate Acknowledgment 450
(see step 2) then, unless the To Party is returning an Acknowledgment Message that is a Delivery 451
Receipt, return an Acknowledgment Message as described in step 2c above. 452

1.3ebXML Reliable Messaging using Queuing Transports 453

This section describes the differences that apply if a Queuing Transport is used to implement 454
Reliable Messaging. 455

Use of the ebXML Reliable Messaging Protocol is identified by the ReliableMessagingMethod 456
parameter being set to Transport for transmission (either a Single-hop or a Multi-hop) 457

If Reliable Messaging using a Queuing Transport is being used then the following rules apply: 458

1)An Intermediate Ack SHOULD not be requested. If an Intermediate Ack is requested, then it is 459
ignored. 460

2)No message acknowledgments with an Acknowledgment element with a type of 461
IntermediateAck should be sent, even if requested 462

3)Implementations should use the facilities of the Queuing Transport to determine if the message 463
was delivered 464

4)If an intermediate MSH cannot forward a message to the next Party then the From Party should 465
be notified using the procedure described in section 10.5. 466

5)An acknowledgment message with an Acknowledgment element with a type attribute set to 467
deliveryReceipt can be sent if requested to inform the sender of the message being 468
acknowledged that the message was delivered. 469

1.4Service and Action Element Values 470

An Acknowledgment element can be included in an ebXMLHeader that is part of a message 471
that is being sent as a result of processing of an earlier message. In this case the values for the 472
Service and Action elements are set by the designer of the Service (see section 0). 473

An Acknowledgment element also can be included in an ebXMLHeader that does not include 474
any results from the processing of an earlier message. In this case, the values of the Service and 475
Action elements MUST be set as follows: 476

? The Service element MUST be set to: 477
http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment 478

? The Action element MUST be set to the value of the type attribute in the 479
Acknowledgment element. 480

Note that deliveryReceiptRequested must be set to None on a message that is only an 481
acknowledgment. 482

1.51.4 Failed Message Delivery 483

It is possible,In the event that asome actor, i<DB>Actor is not used as a term anywhere else in 484
the spec. Do we really want to introduce it? </DB> is involved, in some capacity, in the delivery of 485
a message has determined that Message cannot be delivera messageed cannot be delivered to 486
its ultimate destination. This can be either: 487

when the To Party MSH cannot deliver the message to the aApplication or other process that 488
needs ithas been designated to process the message,, o r 489

? when using Intermediate Acknowledgments and an Intermediate system determines that a 490
message may have been lost. This is illustrated by the diagram below. 491

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message X1 3

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X5

6

Message
being

Acknowledged

Acknowledgement
Message

Message T
(IntermediateAck)

4Message T
(IntermediateAck)

2 û
Msg. Lost

Message Y
(Delivery Receipt)

 492

Figure 10-1 Failed Message Delivery using Intermediate Acknowledgments 493

In this example, Party B does not know if Party C (or Party D) has received the message since, 494
even after resending, it has not received the acknowledgment message (Message T). 495

In both these circumstances the MSHthat actor that detects the problem MUST SHOULD send a 496
delivery failure notification message to the From Party that sent the message being 497
acknowledged message(via the Intermediate Party if required). The delivery failure notification 498
message contains: 499

• a From Party that identifies the Party that detected the problem 500
• a To Party that identifies the From Party that created the message that could not be 501

delivered 502

• a Service element and Action element set as described in Error! Reference source not 503
found.Error! Reference source not found.11.5 504

• a QualityOfServiceInfo element with deliverySemantics set to the same value as the 505
deliverySemantics on the message that could not be delivered 506

• an Error element with a severity of: 507
- Error if the Party that detected the problem could not even transmit the message 508

(e.g. Transmission 3 was impossible)<DB>There is now no diagram, so we need to 509
change this.</DB> 510

- Warning if the message (e.g. Message X in Transmission 3) was transmitted, but no 511
acknowledgment was received. This means that the message probably was not delivered 512
although there is a small probability that it was 513

• an ErrorCode of DeliveryFailure 514

This is illustrated by the diagram below by the text and arrows in red. 515

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message X
1 3

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X
5

6

Message
being

Acknowledged

Acknowledgement
Message

Message T
(IntermediateAck)

4Message T
(IntermediateAck) 2 û

Msg. Lost

Message Y
(Delivery Receipt)

Timeout !!
Delivery
Failed !!

Message U
(Error=DeliveryFailed)

Message V
(IntermediateAck)

7

8
 516

Figure 10-2 Reporting Failed Message Delivery 517

Note that the message that contains an Error element with an ErrorCode of DeliveryFailure 518
(e.g. Message U in Transmission 7) might be sent reliably. It is possible the acknowledgment 519
message for this message (e.g. Message V in Transmission 8) is not received. In this case, the 520
Party that detects the failed delivery (e.g. Party B) SHOULD inform the Party (e.g. Party A) that 521
sent the message being acknowledged (e.g. Message X in Transmission 1) of the failure. How 522
this is done is outside the scope of this specification. 523

1.6Reliable Messaging Parameters 524

This section describes the parameters required to control reliable messaging. This parameter 525
information may be contained: 526

? in the ebXML Message header, or 527

? in the CPA associated with the message. 528

If the information is in both the ebXML message header and the CPA, the information in the 529
header over-rides the CPA. 530

1.1.1Who sets Message Service Parameters 531

The values to be used in parameters can be specified by the following parties: 532
? the From Party 533
? the To Party 534
? the sending Message Service Handler (MSH) 535
? the receiving Message Service Handler 536

Parameters set by the From Party or the To Party, apply to the delivery of a message as a whole. 537
Parameters set by the sending or receiving MSH apply to a single-hop. 538

Note that the From Party is the sending MSH and the To Party is the receiving MSH for the 539
first/last MSH that handles the message. 540

The table below indicates where these parameters may be set. 541
 542

Specified By

Parameter

CPA/
CPP

Message
Header

Routing
Header

From Party deliverySemantics Yes Yes N/A

From Party deliveryReceiptRequested Yes Yes N/A

From Party syncReplyMode Yes Yes N/A

From Party timeToLive Yes Yes N/A

To Party deliveryReceiptProvided Yes No No

Sending MSH reliableMessagingMethod No N/A Yes

Sending MSH intermediateAckRequested No N/A Yes

Sending MSH timeout Yes No No

Sending MSH retries Yes No No

Sending MSH retryInterval Yes No No

Receiving MSH reliableMessagingSupported Yes No No

Receiving MSH intermediateAckSupported Yes No No

Receiving MSH persistDuration Yes No No

Receiving MSH mshTimeAccuracy Yes No No

In this table, the following interpretation of the columns should be used: 543

7)the Specified By columns indicates the Party that sets the value in the Collaboration Party 544
Protocol, Message Header, or Routing Header 545

8)if the CPA/CPP column contains a Yes then it indicates that the party in the Specified By 546
column specifies the value that is present in the CPP 547

9)if the CPA/CPP column contains a No then it indicates that the parameter value is never 548
specified in the CPP 549

10)if the Message Header or Routing Header columns contain a Yes then it indicates that the 550
parameter value may be specified in the Header element or Routing Header and over-rides 551
any value in the CPA. It the value is not specified in the Header element or Routing Header 552
then the value in the CPA must be used. 553

11)if the Message Header/Routing Header columns contain a No then it indicates that the value 554
in the CPA is always used 555

12)if the Message Header/Routing Header columns contain a N/A then it indicates that the 556
value may be specified in another header 557

These parameters are described below. 558

1.1.2From Party Parameters 559

This section describes the parameters that are set by the From Party 560

1.1.1.1Delivery Semantics 561

The deliverySemantics parameter may be present as either an element within the 562
ebXMLHeader element or as a parameter within the CPA. See section 8.4.6.1 for more 563
information. 564

1.1.1.2Delivery Receipt Requested 565

The deliveryReceiptRequested parameter may be present as either an element within the 566
ebXMLHeader element or as a parameter within the CPA. See section 8.4.6.2 for more 567
information. 568

1.1.1.3Sync Reply Mode 569

The syncReplyMode parameter may be present as either an element within the ebXMLHeader 570
element or as a parameter within the CPA. See section 8.4.6.3 for more information. 571

1.1.1.4Time To Live 572

The TimeToLive element may be presented within the ebXMLHeader element see section 573
8.4.5.4 for more information. 574

1.1.3To Party Parameters 575

This section describes the parameters that are set by the To Party 576

1.1.1.1Delivery Receipt Provided 577

The DeliveryReceiptProvided parameter indicates whether a To Party can provide an 578
acknowledgment message with a type attribute of deliveryReceipt in response to a message. 579
Valid values are: 580

? Signed - indicates that only a signed Delivery Receipt can be provided 581
? Unsigned - indicates only an unsigned Delivery Receipt can be provided, 582
? Both - indicates that either a signed or an unsigned Delivery Receipt can be provided, or 583
? None - indicates that the To Party does not create Delivery Receipts 584

If a MSH receives a Message where deliveryReceiptRequested is in not compatible with the 585
value of DeliveryReceiptProvided then the MSH MUST return an Error Message to the From 586
Party MSH, reporting that the DeliveryReceiptProvided is not supported. This must contain an 587
errorCode set to NotSupported and a severity of Error. 588

1.1.4Sending MSH Parameters 589

This section describes the parameters that are set by the Party that operates the Sending MSH. 590

1.1.1.1Reliable Messaging Method 591

The ReliableMessagingMethod parameter indicates the requested method for Reliable 592
Messaging that will be used when sending a Message. Valid values are: 593

? ebXML in this case the ebXML Reliable Messaging Protocol as defined in section 10.2 is 594
followed, or 595

? Transport, in this case a Queuing Transport Protocol is used for reliable delivery of the 596
message, see section 0. 597

1.6.4.2Intermediate Ack Requested 598

The IntermediateAckRequested parameter is used by the Sending MSH to request that the 599
Receiving MSH that receives the Message returns an acknowledgment message with an 600
Acknowledgment element with a type of IntemediateAcknowledgment.. 601

Valid values for IntermediateAckRequested are: 602

? Unsigned - requests that an unsigned Delivery Receipt is requested 603

? Signed - requests that a signed Delivery Receipt is requested, or 604

? None - indicates that no Delivery Receipt is requested. 605

The default value is None. 606

1.1.1.3Timeout Parameter 607

The timeout parameter is an integer value that specifies the time in seconds that the Sending 608
MSH MUST wait for an Acknowledgment Message before first resending a message to the 609
Receiving MSH. 610

1.1.1.4Retries Parameter 611

The retries Parameter is an integer value that specifies the maximum number of times the 612
message being acknowledged must be resent to the Receiving MSH using the same 613
Communications Protocol by the Sending MSH. 614

1.1.1.5RetryInterval Parameter 615

The retryInterval parameter is an integer value specifying, in seconds, the time the Sending 616
MSH MUST wait between retries, if an Acknowledgment Message is not received. 617

1.1.1.6Deciding when to resend a message 618

The Sending MSH MUST resend the original message if an Acknowledgment Message has not 619
been received from the Receiving MSH and either: 620

? the message has not yet been resent and at least the time specified in the timeout 621
parameter has passed since the first message was sent, or 622

? the message has been resent, and 623
-at least the time specified in the retryInterval has passed since the last time the message 624

was resent, and 625
-the message has been resent less than the number of times specified in the retries 626

Parameter, and 627

If the Sending MSH does not receive an Acknowledgment Message after the maximum number 628
of retries, the Sending MSH SHOULD notify either: 629

? the application and/or system administrator function if the Sending MSH is the From Party 630
MSH, or 631

? send an message reporting the delivery failure, if the Sending MSH is operating by an 632
Intermediate Party (see section 10.5) 633

1.6.5Receiving MSH Parameters 634

This section describes the parameters that are set by the Party that operates the Receiving MSH. 635

1.1.1.1Reliable Messaging Methods Supported 636

The reliableMessagingMethodsSupported parameter is a list of the methods that a MSH uses 637
to support Reliable Messaging. It must be a URI. The URI for the ebXML Reliable Messaging 638
Protocol described in section 10.2 is http://www.ebxml.org/namespaces/reliableMessaging 639

1.1.1.2PersistDuration 640

persistDuration is the minimum length of time, expressed as a [XMLSchema] timeDuration, that 641
data from a Message that is sent reliably, is kept in Persistent Storage by a MSH that receives 642
that Message. 643

In order to support the filtering of duplicate messages, a Receiving MSH MUST, as a minimum, 644
save the MessageId in persistent storage. It is also RECOMMENDED that the following be kept 645
in Persistent Storage: 646

? the complete message, at least until the information in the message has been passed to the 647
application or other process that needs to process it 648

? the time the message was received, so that the information can be used to generate the 649
response to a Message Status Request (see section 9.1.1) 650

persistDuration is specified in the CPA. 651

A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the 652
elapsed time indicated by persistDuration has passed since the message was first sent as the 653
receiving MSH will probably not treat it as a duplicate. 654

If a message cannot be sent successfully before persistDuration has passed, then the MSH 655
should report a delivery failure (see section 10.5). 656

Note that implementations may determine that a message is persisted for longer than the time 657
specified in persistDuration, for example in order to meet legal requirements or the needs of a 658
business process. This information is recorded separately within the CPA. 659

In order to ensure that persistence is continuous as the message is passed from the receiving 660
MSH to the process or application that is to handle it, it is RECOMMENDED that a message is 661
not removed from persistent storage until the MSH knows that the data in the message has been 662
received by the process/application. 663

1.1.1.3MSH Time Accuracy 664

The mshTimeAccuracy parameter in the CPA indicates the minimum accuracy that a Receiving 665
MSH keeps the clocks it uses when checking, for example, TimeToLive. It’s value is in the format 666
“mm:ss” which indicates the accuracy in minutes and seconds. 667

 668

