
1 Reliable Messaging 1

Reliable Messaging defines an interoperable protocol such that the two Messaging Service 2
Handlers (MSH) can “reliably” exchange messages that are sent using “reliable messaging” 3
semantics. 4

“Reliably” means that the From Party can be highly certain that the message sent will be 5
delivered to the To Party. If there is a problem in sending a message then the sender resends the 6
message until either the message is delivered, or the sender gives up. If the message cannot be 7
delivered, for example because there has been a catastrophic failure of the To Party’s system, 8
then the From Party is informed. 9

A From Party is informed by a To Party that a message has been delivered by the To Party 10
returning an Acknowledgement Message. <DB>Added this sentence here since we need to 11
describe an acknowledgement message early in the chapter. Currently it is defined after it is 12
used.</DB> 13

1.1.1 Persistent Storage and System Failure 14

A MSH that supports Reliable Messaging MUST keep messages that are sent or received reliably 15
in persistent storage. In this context persistent storage is a method of storing data that does not 16
lose information after a system failure or interruption. 17

This specification recognizes that different degrees of resilience may be realized depending on 18
the technology that is used to persist the data. However, as a minimum, persistent storage that 19
has the resilience characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly 20
RECOMMENDED though that implementers of this specification use technology that is resilient to 21
the failure of any single hardware or software component. 22

Even after a system interruption or failure, a MSH MUST ensure that messages in persistent 23
storage are processed in the same way as if the system failure or interruption had not occurred. 24
How this is done is an implementation decision. 25

In order to support the filtering of duplicate messages, a Receiving MSH SHOULD, save the 26
MessageId in persistent storage. It is also RECOMMENDE D that the following be kept in 27
Persistent Storage: 28
• the complete message, at least until the information in the message has been passed to the 29

application or other process that needs to process it 30
• the time the message was received, so that the information can be used to generate the 31

response to a Message Status Request (see section Error! Reference source not found.) 32

1.1.2 Methods of Implementing Reliable Messaging 33

Support for Reliable Messaging can be implemented in one of the following two ways: 34
• using the ebXML Reliable Messaging protocol, or 35
• using ebXML Header and Message structures together with commercial software products 36

that are designed to provide reliable delivery of messages using alternative 37
protocols.<DB>Change elsewhere</DB> 38

Each of these are described later. 39

1.2 Reliable Messaging Parameters 40

This section describes the parameters required to control reliable messaging. This parameter 41
information is contained in the following: 42
• the ebXML Message Header, or 43

• the CPA that governs the processing of a message. 44

The table below indicates where these parameters may be set. 45

Parameter CPA Header

deliverySemantics Yes Yes

syncReplyMode Yes Yes

timeToLive Yes Yes

reliableMessagingMethod No Yes

ackRequested No Yes

timeout Yes No

retries Yes No

retryInterval Yes No

persistDuration Yes No

In this table, the following interpretation of the columns should be used: 46

1) if the CPA column contains a Yes then it indicates that the value that is present in the CPA 47
determines the processing semantics 48

2) if the CPA column contains a No then it indicates that the parameter value is never specified 49
in the CPA 50

3) <DB>I think we have four alternative interpretations here I prefer option a)<DB>: 51

a) if the Header column contains a Yes then it indicates that the parameter value MAY be 52
specified in the ebXML Header document. If it is present, then it overrides the value in the 53
CPA 54

b) if the Header column contains a Yes and the value of the header element differs from the 55
equivalent in the CPA use the value in the header and report an error with severity of 56
Warning and an errorCode of Inconsistent 57

c) if the Header column contains a Yes and the value of the header element differs from the 58
equivalent in the CPA use the value in the CPA and report an error with severity of 59
Warning and an errorCode of Inconsistent 60

d) if the Header column contains a Yes then the value of the header element MUST be set 61
to the same value as in the CPA. If it differs, then report an error with severity of Error 62
and an errorCode of Inconsistent<DB> 63

1.2.1 Delivery Semantics 64

The deliverySemantics parameter may be present as either an element within the 65
ebXMLHeader element or as a parameter within the CPA. See section Error! Reference source 66
not found. for more information. 67

1.2.2 Sync Reply Mode 68

The syncReplyMode parameter may be present as either an element within the ebXMLHeader 69
element or as a parameter within the CPA. See section Error! Reference source not found. for 70
more information. 71

1.2.3 Time To Live 72

The TimeToLive element may be present within the ebXMLHeader element see section Error! 73
Reference source not found. for more information. 74

1.2.4 Reliable Messaging Method 75

The ReliableMessagingMethod parameter indicates the requested method for Reliable 76
Messaging that will be used when sending a Message. Valid values are: 77

• ebXML in this case the ebXML Reliable Messaging Protocol as defined in section 1) is 78
followed, or 79

• Transport, in this case a commercial software product is used for reliable delivery of the 80
message, see section1.4. 81

1.2.5 Ack Requested 82

The AckRequested parameter is used by the Sending MSH to request that the Receiving MSH 83
that receives the Message returns an acknowledgment message with an Acknowledgment 84
element with a type of Acknowledgment.. 85

Valid values for IntermediateAckRequested are: 86

• Unsigned - requests that an unsigned Acknowledgement is requested 87

• Signed - requests that a signed Acknowledgement is requested, or 88

• None - indicates that no Acknowledgement is requested. 89

The default value is None. 90

1.2.6 Timeout Parameter 91

The timeout parameter is an integer value that specifies the minimum time in seconds 92
<DB>Perhaps this should be an XML Schema TimeDuration?. </DB> that the Sending MSH 93
MUST wait for an Acknowledgment Message before first resending a message to the Receiving 94
MSH. 95

1.2.7 Retries Parameter 96

The retries Parameter is an integer value that specifies the maximum number of times a Sending 97
MSH SHOULD attempt to redeliver an unacknowledged or undelivered message using the same 98
Communications Protocol. 99

1.2.8 RetryInterval Parameter 100

The retryInterval parameter is an integer value specifying, in seconds, <DB>Perhaps this should 101
be an XML Schema TimeDuration?. </DB> the minimum time the Sending MSH MUST wait 102
between retries, if an Acknowledgment Message is not received. 103

1.2.9 PersistDuration 104

The persistDuration parameter s the minimum length of time, expressed as a [XMLSchema] 105
timeDuration, that data from a Message that is sent reliably, is kept in Persistent Storage by a 106
MSH that receives that Message. 107

A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the 108
elapsed time indicated by persistDuration has passed since the message was first sent as the 109
receiving MSH will probably not treat it as a duplicate. 110

If a message cannot be sent successfully before persistDuration has passed, then the MSH 111
should report a delivery failure (see section 1.5). 112

1.3 ebXML Reliable Messaging Protocol 113

The ebXML Reliable Messaging Protocol described in this section MUST be followed if the 114
deliverySemantics parameter/element is set to OnceAndOnlyOnce and the 115
ReliableMessagingMethod parameter/element is set to ebXML (the default). 116

The ebXML Reliable Messaging Protocol is illustrated by the figure below. 117

To Party

MSH

Application

From Party

MSH
1. Message

2. Ack
Message

Application Message

Acknowledgement
Message

 118

 119

Figure 1-1 Indicating that a message has been received 120

The receipt of the acknowledgment message indicates that the message being acknowledged 121
has been successfully received and either processed or persisted by the receiving MSH to which 122
the message was sent. 123

An acknowledgment message MUST contain a MessageData element with a RefToMessageId 124
that contains the same value as the MessageId element in the message being acknowledged. 125

1.3.1 Sending Message Behavior 126

If a MSH is given data by an application that needs to be sent reliably then the MSH MUST do the 127
following: 128

1) Create a message from components received from the application that includes: 129

a) deliverySemantics set to OnceAndOnlyOnce, and 130

b) a RoutingHeader element that identifies the sender and the receiver URIs 131

2) Save the message in persistent storage (see section 1.1.1) 132

3) Send the message to the Receiver MSH 133

4) Wait for the Receiver MSH to return an acknowledgment message and, if it does not, then 134
resend the identical message as described in section 1.3.2.2 135

1.3.2 Receiving Message Behavior 136

If deliverySemantics on the received message is set to OnceAndOnlyOnce then do the 137
following: 138

1) Check to see if the message is a duplicate (e.g. there is a message in persistent storage that 139
was received earlier that contains the same value for the MessageId) 140

2) If the message is not a duplicate then do the following: 141

a) Save the MessageId of the received message in persistent storage. As an 142
implementation decision, the whole message MAY be stored if there are other reasons 143
for doing so 144

b) If the received message contains a RefToMessageId element then do the following: 145

i) Look for a message in persistent storage that has a MessageId that is the same as 146
the value of RefToMessageId on the received Message 147

ii) If a message is found in persistent storage then mark the persisted message as 148
delivered 149

c) Generate an Acknowledgement Message in response (see section 1.3.2.1). <DB>This is 150
a simpler version of the text in version 0.93 and relies more on interpretation of other 151
parts of the spec.</DB> 152

3) If the message is a duplicate, then do the following: 153

a) Look in persistent storage for a response to the received message (i.e. it contains a 154
RefToMessageId that matches the MessageId of the received message) that was most 155
recently sent to the MSH that sent the received message (i.e. it has a RoutingHeader 156
element with the greatest value of the Timestamp.)<DB>Note it is not yet agreed 157
whether the most recent message should be sent. Whatever message is sent, we need 158
to define rules for it.</DB> 159

b) If no message was found in persistent storage then ignore the received message as 160
either no message was generated in response to the message, or the processing of the 161
earlier message is not yet complete 162

c) If a message was found in persistent storage then resend the persisted message back to 163
the MSH that sent the received message. 164

1.3.2.1 Generating an Acknowledgement Message 165

An Acknowledgement Message MUST be generated whenever a message is received with: 166
• deliverySemantics set to OnceAndOnlyOnce and 167
• reliableMessagingMethod set to ebXML (the default). 168

As a minimum, it MUST contain a MessageData element with a RefToMessageId that contains 169
the same value as the MessageId element in the message being acknowledged. 170

If ackRequested in the RoutingHeader of the received message is set to Signed or Unsigned 171
then the acknowledgement message MUST also contain an Acknowledgement element. 172

Depending on the value of the syncReplyMode parameter, the Acknowledgement Message can 173
also be sent at the same time as the response to the processing of the received message. In this 174
case, the values for the Header elements of the Acknowledgement Message are set by the 175
designer of the Service (see section Error! Reference source not found.). 176

If an Acknowledgment element is being sent on its own, then the value of the Header elements 177
MUST be set as follows: 178

1) The Service element MUST be set to: 179
http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment 180

2) The Action element MUST be set to Acknowledgment. 181

3) The From element MUST be set to the ReceiverURI from the last RoutingHeader in the 182
message that has just been received 183

4) The To element MUST be set to the SenderURI from the last RoutingHeader in the 184
message that has just been received 185

5) The RefToMessageId element MUST be set to the MessageId of the message that has just 186
been received 187

6) The deliverySemantics MUST be set to BestEffort 188

1.3.2.2 Resending Lost Messages and Duplicate Filtering 189

This section describes the behavior that is required by the sender and receiver of a message in 190
order to handle when messages are lost. A message is "lost" when a sending MSH does not 191
receive a response to a message. For example, it is possible that a message was lost, for 192
example: 193

û
Msg. Lost

Party B

MSH

Application

Party A

MSH
Message X

Application
Message

being
Acknowledged

1

 194

Figure 1-2 Lost “Message Being Acknowledged” 195

It is also possible that the Acknowledgment Message was lost, for example ... 196

û
Msg. Lost

Party B

MSH

Application

Party A

MSH
Message X

Application

Message Y

1

2

Acknowledgement
Message

 197

Figure 1-3 Lost Acknowledgment Message 198

The rules that apply are as follows: 199

1) The Sending MSH MUST resend the original message if an Acknowledgment Message has 200
not been received from the Receiving MSH and either of the following are true: 201

a) The message has not yet been resent and at least the time specified in the timeout 202
parameter has passed since the first message was sent, or 203

b) The message has been resent, and the following are both true: 204

i) At least the time specified in the retryInterval has passed since the last time the 205
message was resent, and 206

ii) The message has been resent less than the number of times specified in the retries 207
Parameter 208

2) If the Sending MSH does not receive an Acknowledgment Message after the maximum 209
number of retries, the Sending MSH SHOULD notify the application and/or system 210
administrator function. 211

3) If the Sending MSH detects a communications protocol error that is unrecoverable at the 212
transport protocol level then the Sending MSH SHOULD first attempt to resend the message 213
using the same transport protocol until the number of retries has been reached, and then 214
again, using different communications protocols, if the CPA allows this. If these are not 215
successful, then notify the From Party of the failure to deliver as described in section 1.5. 216

1.3.2.3 Duplicate Message Handling 217

In this context: 218
• an identical message is a message that contains, apart from perhaps an additional 219

RoutingHeader element, the same ebXML Header and ebXML Payload as the earlier 220
message that was sent. 221

• a duplicate message is a message that contains the same MessageId as an earlier 222
message that was received. 223

• the most recent message is the message with the latest Timestamp in the MessageData 224
element that has the same RefToMessageId as the duplicate message that has just been 225
received.<DB>Chris Ferris, disagrees with resending the latest message. DB & CF need to 226
go through this. This is carried over from the last version of the spec. </DB> 227

Note that the Communication Protocol Envelope MAY be different. This means that the same 228
message MAY be sent using different communication protocols and the reliable messaging 229
behavior described in this section will still apply. The ability to use alternative communication 230
protocols is specified in the CPA and is an OPTIONAL implementation specific feature. 231

 232

Party BParty A

MSH MSHMessage X

Message Yû
Msg. Lost

Message X

Message X

Message Y

û
Msg. Lost

Timeout !!

Timeout !!

Ignore
Duplicate

Application Application
1

2

3

4

5

 233

Figure 1-4 Resending Lost Messages 234

The diagram above shows the behavior that MUST be by the sending and receiving MSH that are 235
sent with deliverySemantics of OnceAndOnlyOnce. Specifically: 236

1) The sender of the message (e.g. Party A) MUST re-send the identical message if no 237
Acknowledgment Message is received 238

2) The recipient of the message being acknowledged (e.g. Party B), when it receives a duplicate 239
message, MUST re-send to the sender of the message (e.g. Party A), a message identical to 240
the most recent message that was sent to the recipient (i.e. Party A) 241

3) The recipient of the message (e.g. Party B) MUST NOT forward them a second time to the 242
application, or other process that ultimately needs to process received messages. 243

1.3.3 Multi-hop Reliable Messaging 244

<DB>I've just concluded that we can probably do away with the complete Munlti-hop reliable 245
messaging section if we consider the intermediary receiving MSH as acting as a proxy for the To 246
Party MSH. This works since: 247
• The Acknowledgement message contains a From element that identifies the organization 248

that generated the Acknowledgement element if it is not the To Party. 249
• The Routing Header can provide an audit trail (or not) if you allow multiple entries. After all, if 250

some of the hops are not ebXML, then you cannot generate an audit trail for them 251

The big advantage is that it makes the behavior of the From Party the same whether or not multi-252
hop is being used. The text below illustrates how this could work.</DB> 253

Multi-hop reliable Messaging involves the sending of a message reliably from the From Party to 254
the To Party via an intermediary that acts as a "black box". This means that the sender of a 255
message does not need to know the address or protocols used to deliver the message to the final 256
destination. 257

Multi-hop Reliable Messaging can occur either with or without Intermediate Acknowledgments. 258

An Intermediary knows that Multi-hop Reliable Messaging with Intermediate Acknowledgments 259
applies if the received message contains ackRequested set to Signed or UnSigned. 260

1.3.3.1 Multi-hop Reliable Messaging without Intermediate Acknowledgments 261

This is illustrated by the diagram below. 262

Black Box
Party A

MSH
Message X

Application

Party B

MSH

Routing
Application

MSH
Message Y

1

4

Party C

MSH

Application

Message X

Message Y

2

3

 263

 264

Figure 1-5 Multi-hop Reliable Messaging without Intermediate Acknowledgments 265

In this case, the intermediary (Party B) is acting as a proxy for the To Party (Party C). 266

1.3.3.2 Multi-hop Reliable Messaging with Intermediate Acknowledgments 267

This is illustrated by the diagram below. 268

Black Box
Party A

MSH

Application

Party B

MSH

Routing
Application

MSH

Party C

MSH

Application

Message X

Acknowledgement
Message

1

2

Message X

Acknowledgement
Message

3

4

 269

Figure 1-6 Multi-hop Reliable Messaging with Intermediate Acknowledgments 270

In this case, the Intermediary (Party B) accepts responsibility for delivering the message to its 271
final destination by sending an Acknowledgement Message back to the sender of the original 272
message. As far as sending and receiving of messages, the Intermediary behaves the same as a 273
To Party with respect to the sending and receiving of messages. 274

If the Intermediary cannot, for some reason, deliver the message successfully to To Party (Party 275
C), then it sends a Deli very Failure message to the From Party (Party A) – see section 1.5. 276

1.4 ebXML Reliable Messaging using Commercial Software Products 277

This section describes the differences that apply if commercial software products are used to 278
implement Reliable Messaging. 279

Use of the ebXML Reliable Messaging Protocol is identified by the ReliableMessagingMethod 280
parameter being set to Tra for transmission 281

If Reliable Messaging using a commercial software product is being used then the following rules 282
apply: 283

1) Implementations should use the facilities of the commercial software product to determine if 284
the message was delivered 285

2) If the software product being used reports that a message cannot be delivered then the From 286
Party should be notified using the procedure described in section 1.5. 287

1.5 Failed Message Delivery 288

In the event that a MSH or other process that is involved, in some capacity in the delivery of a 289
message that is sent with deliverySemantics set to OnceAndOnlyOnce has determined that the 290
message cannot be delivered to the application or other process that has been designated to 291
process the message, then that MSH or process SHOULD send a delivery failure notification 292
message to the From Party that sent the message. The delivery failure notification message 293
contains: 294
• a From Party that identifies the Party that detected the problem 295

• a To Party that identifies the From Party that created the message that could not be 296
delivered 297

• a Service element and Action element set as described in Error! Reference source not 298
found. 299

• a QualityOfServiceInfo element with deliverySemantics set to the same value as the 300
deliverySemantics on the message that could not be delivered 301

• an Error element with a severity of: 302
- Error if the Party that detected the problem could not even transmit the message (e.g. 303

the communications transport was not available) 304
- Warning if the message was transmitted, but no acknowledgment message was 305

received. This means that the message probably was not delivered although there is a 306
small probability that it was 307

• an ErrorCode of DeliveryFailure 308

 309

2 Parameters that need to be specified in the CPA 310

<DB>The following (or something similar) is not part of the TRP spec but needs to be included in 311
the CPA spec.</DB> 312

2.1.1.1 Delivery Receipt Requested 313

The deliveryReceiptRequested parameter may be present as either an element within the 314
ebXMLHeader element or as a parameter within the CPA. See section Error! Reference source 315
not found. for more information. 316

2.1.1.2 Delivery Receipt Provided 317

The DeliveryReceiptProvided parameter indicates whether a To Party can provide an 318
acknowledgment message with a type attribute of deliveryReceipt in response to a message. 319
Valid values are: 320
• Signed - indicates that only a signed Delivery Receipt can be provided 321
• Unsigned - indicates only an unsigned Delivery Receipt can be provided, 322
• Both - indicates that either a signed or an unsigned Delivery Receipt can be provided, or 323
• None - indicates that the To Party does not create Delivery Receipts 324

If a MSH receives a Message where deliveryReceiptRequested is in not compatible with the 325
value of DeliveryReceiptProvided then the MSH MUST return an Error Message to the From 326
Party MSH, reporting that the DeliveryReceiptProvided is not supported. This must contain an 327
errorCode set to NotSupported and a severity of Error. 328

2.1.1.3 Reliable Messaging Methods Supported 329

The reliableMessagingMethodsSupported parameter is a list of the methods that a MSH uses 330
to support Reliable Messaging. It must be a URI. The URI for the ebXML Reliable Messaging 331
Protocol described in section 1) is http://www.ebxml.org/namespaces/reliableMessaging 332

2.1.1.4 PersistDuration 333

persistDuration is the minimum length of time, expressed as a [XMLSchema] timeDuration, that 334
data from a Message that is sent reliably, is kept in Persistent Storage by a MSH that receives 335
that Message. 336

In order to support the filtering of duplicate messages, a Receiving MSH MUST, as a minimum, 337
save the MessageId in persistent storage. It is also RECOMMENDED that the following be kept 338
in Persistent Storage: 339

• the complete message, at least until the information in the message has been passed to the 340
application or other process that needs to process it 341

• the time the message was received, so that the information can be used to generate the 342
response to a Message Status Request (see section Error! Reference source not found.) 343

persistDuration is specified in the CPA. 344

A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the 345
elapsed time indicated by persistDuration has passed since the message was first sent as the 346
receiving MSH will probably not treat it as a duplicate. 347

If a message cannot be sent successfully before persistDuration has passed, then the MSH 348
should report a delivery failure (see section 1.5). 349

Note that implementations may determine that a message is persisted for longer than the time 350
specified in persistDuration, for example in order to meet legal requirements or the needs of a 351
business process. This information is recorded separately within the CPA. 352

In order to ensure that persistence is continuous as the message is passed from the receiving 353
MSH to the process or application that is to handle it, it is RECOMMENDED that a message is 354
not removed from persistent storage until the MSH knows that the data in the message has been 355
received by the process/application. 356

2.1.1.5 MSH Time Accuracy 357

The mshTimeAccuracy parameter in the CPA indicates the minimum accuracy that a Receiving 358
MSH keeps the clocks it uses when checking, for example, TimeToLive. It’s value is in the format 359
“mm:ss” which indicates the accuracy in minutes and seconds. 360

3 Acknowledgement element 361

Changes required to the acknowledgement element 362

3.1 Acknowledgment Element 363

The Acknowledgment element is an optional element that is used by one Message Service 364
Handler to indicate that another Message Service Handler has received a message. 365

For clarity two terms are defined: 366
• message being acknowledged. This is the Message that is has been received by a MSH that 367

is now being acknowledged 368
• acknowledgment message. This is the message that acknowledges that the message being 369

acknowledged has been received. 370

The message being acknowledged is identified by the RefToMessageId contained in the 371
MessageData element contained within the Header Element of the acknowledgment message 372
containing the value of the MessageId of the message being acknowledged. 373

The Acknowledgment element consists of the following: 374
• a Timestamp element 375
• a From element 376
• a signed attribute 377

3.1.1 Timestamp element 378

No change 379

3.1.2 From element 380

This is the same element as the From element within Header element (see section Error! 381
Reference source not found.). However, when used in the context of an Acknowledgment 382
Element, it contains the identifier of the Party that is generating the acknowledgment message. 383

If the From element is omitted then the Party that is sending the element is identified by the From 384
element in the Header element. 385

3.1.3 type attribute 386

delete this section 387

3.1.4 signed attribute 388

No change 389

 390

4 Updated XML Schema 391

This specifies the only required change to the Schema ... 392
<!-- ACKNOWLEDGEMENT --> 393
 <xsd:element name="Acknowledgment"> 394
 <xsd:complexType> 395
 <xsd:sequence> 396
 <xsd:element ref="Timestamp"/> 397
 <xsd:element ref="From" minOccurs="0" maxOccurs="1"/> 398
 </xsd:sequence> 399
 <xsd:attribute name="id" type="xsd:ID"/> 400
 <xsd:attribute name="type" use="default" value="DeliveryReceipt"/> 401
 <xsd:simpleType> 402
 <xsd:restriction base="xsd:NMTOKEN"> 403
 <xsd:enumeration value="DeliveryReceipt"/> 404
 <xsd:enumeration value="IntermediateAck"/> 405
 </xsd:restriction> 406
 </xsd:simpleType> 407
 <xsd:attribute name="signed" type="xsd:boolean"/> 408
 </xsd:complexType> 409
 </xsd:element> 410

... to ... 411
<!-- ACKNOWLEDGEMENT --> 412
 <xsd:element name="Acknowledgment"> 413
 <xsd:complexType> 414
 <xsd:sequence> 415
 <xsd:element ref="Timestamp"/> 416
 <xsd:element ref="From" minOccurs="0" maxOccurs="1"/> 417
 </xsd:sequence> 418
 <xsd:attribute name="id" type="xsd:ID"/> 419
 <xsd:attribute name="signed" type="xsd:boolean"/> 420
 </xsd:complexType> 421
 </xsd:element> 422

5 Non-normative examples of multi-hop 423

This section is not to be included in the spec but shows a number of alternative message flows 424
that illustrate how the black box approach and multi-hop could work. 425

Black Box
Party A

MSH
Message X

Application

Party B

MSH

Routing
Application

MSH
Message Y

1

4

Party C

MSH

Application

Message X

Message Y

2

3

 426

 427

Black Box
Party A

MSH

Application

Party B

MSH

Routing
Application

MSH

Party C

MSH

Application

Message X

Acknowledgement
Message

1

2

Message X

Acknowledgement
Message

3

4

 428

 429

Black Box
Party A

MSH

Application

Party B

MSH

Routing
Application

MSH

Party C

MSH

Application

Message X

Message Y

1

7

Message X

Acknowledgement
Message

3

4

Message Y

Acknowledgement
Message

5

6

 430

 431

Black Box
Party A

MSH

Application

Party B

MSH

Routing
Application

MSH

Party C

MSH

Application

Message X

Message Y

3

4

Message X

Acknowledgement
Message

1

2

Message Y

Acknowledgement
Message

5

6

 432

