O©CoO~NOOT WM =

el el =
WN RO

14

15
16
17

18
19
20
21
22

23
24
25

26
27
28

29
30

31
32

33

34
35

36
37
38

39

40

41
42

43

1 Reliable Messaging

Reliable Messaging defines an interoperable protocol such that the two Messaging Service

Handlers (MSH) operated-by-a-FromParty-and-aTo-Party-can “reliably” exchange messages that

are sent using “reliable messaging” semantics.

“Reliably” means that the From Party can be highly certain that the message sent will be
delivered to the To Party. If there is a problem in sending a message then the sender resends the
message until either the message is delivered, or the sender gives up. If the message cannot be
delivered, for example because there has been a catastrophic failure of the To Party’s system,
then the From Party is informed.

A From Partyis informed by a To Partythat a message has been delivered by the To Party

returning an Acknowledgement Message. <DB>Added this sentence here since we need to

describe an acknowledgement message early in the chapter. Currently it is defined after it is
used.</DB>

1.1.1 Persistent Storage and System Failure

A MSH that supports Reliable Messaging MUST keep messages that are sent or received reliably
in persistent storage. In this context persistent storage is a method of storing data that does not
lose information after a system failure or interruption.

This specification recognizes that different degrees of resilience may be realized depending on
the technology that is used to persist the data. However, as a minimum, persistent storage that
has the resilience characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly
RECOMMENDED though that implementers of this specification use technology that is resilient to
the failure of any single hardware or software component.

Even after a system interruption or failure, a MSH MUST ensure that messages in persistent
storage are processed in the same way as if the system failure or interruption had not occurred.
How this is done is an implementation decision.

In order to support the filtering of duplicate messages, a Receiving MSH SHOULD, save the
Messageld in persistent storage. It is also RECOMMENDE D that the following be kept in
Persistent Storage:
the complete message, at least until the information in the message has been passed to the
application or other process that needs to process it
the time the message was received, so that the information can be used to generate the
response to a Message Status Request (see section Error! Reference source not found.)

1.1.2 Methods of Implementing Reliable Messaging
Support for Reliable Messaging can be implemented in one of the following two ways:
using the ebXML Reliable Messaging protocol, or

using ebXML Header and Message structures together with commercial software products
that are designed to provide reliable delivery of messages using alternative
protocols.<DB>Change elsewhere</DB>

Each of these are described belowlater.

1.2 Reliable Messaging Parameters

This section describes the parameters required to control reliable messaging. This parameter
information is contained in the following:

the ebXML Message Header, or

44
45

46

47
48

49
50

51

52
53
54

55
56
57

58
59
60

61
62
63

64

65
66
67

68

69
70
71

the CPA that governs the processing of a message.

The table below indicates where these parameters may be set.

Parameter CPA Header
deliverySemantics Yes Yes
syncReplyMode Yes Yes
timeToLive Yes Yes
reliableMessagingMethod No Yes
ackRequested No Yes
timeout Yes No
retries Yes No
retrylnterval Yes No
persistDuration Yes No

In this table, the following interpretation of the columns should be used:

1) ifthe CPA column contains a_Yes then it indicates that the value that is present in the CPA

determines the processing semantics

2) ifthe CPA column contains a No then it indicates that the parameter value is never specified

in the CPA

3) <DB>I think we have four alternative interpretations here | prefer option a)<DB>:

a)

if the Header _column contains a_Yes then it indicates that the parameter value MAY be

b)

specified in the ebXML Header document. If it is present, then it overrides the value in the
CPA

if the Header column contains a Yes and the value of the header element differs from the

c)

equivalent in the CPA use the value in the header and report an error with _severity of
Warning and an errorCode of Inconsistent

if the Header column contains a Yes and the value of the header element differs from the

d)

equivalent in the CPA use the value in the CPA and report an error with severity of
Warning and an errorCode of Inconsistent

if the Header column contains a Yes then the value of the header element MUST be set

1.2.1

to the same value as in the CPA. If it differs, then report an error with severity of Error
and an errorCode of Inconsistent<DB>

Delivery Semantics

The deliverySemantics parameter may be present as either an element within the

ebXMLHeader element or as a parameter within the CPA. See section Error! Reference source

not found. for more information.

1.2.2

Sync Reply Mode

The syncReplyMode parameter may be present as either an element within the ebXMLHeader

element or as a parameter within the CPA. See section Error! Reference source not found. for

more information.

72

73
74

75

76
77

78
79

80
8l

82

83
84
85

86
87
88
89
90

91

92
93
94
95

96

97
98
99

100

101
102
103

104

105
106
107

1.2.3 TimeTo Live

The TimeToLive element may be present within the ebXMLHeader element see section Error!
Reference source not found. for more information.

1.2.4 Reliable Messaging Method

The ReliableMessagingMethod parameter indicates the requested method for Reliable
Messaqing that will be used when sending a Message. Valid values are:

eb XML in this case the ebXML Reliable Messaging Protocol as defined in section 1) is
followed, or

Transport, in this case a commercial software product is used for reliable delivery of the
message, see sectionl.4.

1.2.5 Ack Requested

The AckRequested parameter is used by the Sending MSH to request that the Receiving MSH
that receives the Message returns an_acknowledgment message with an Acknowledgment
element with a type of Acknowledgment..

Valid values for IntermediateAckRequested are:

unsigned - requests that an unsigned Acknowledgement is requested

Signed - requests that a signed Acknowledgement is requested, or

None - indicates that no Acknowledgement is requested.

The default value is None.

1.2.6 __Timeout Parameter

The timeout parameter is an integer value that specifies the minimum time in seconds
<DB>Perhaps this should be an XML Schema TimeDuration?. </DB> that the Sending MSH
MUST wait for an Acknowledgment Message before first resending a message to the Receiving
MSH.

1.2.7 Retries Parameter

The retries Parameter is an integer value that specifies the maximum number of times a Sending
MSH SHOULD attempt to redeliver an unacknowledged or undelivered message using the same
Communications Protocol.

1.2.8 Retryinterval Parameter

The retryInterval parameter is an integer value specifying, in seconds, <DB>Perhaps this should
be an XML Schema TimeDuration?. </DB> the minimum time the Sending MSH MUST wait
between retries, if an Acknowledgment Message is not received.

1.2.9 PersistDuration

The persistDuration parameter s the minimum length of time, expressed as a [XMLSchema]
timeDuration, that data from a Message that is sent reliably, is kept in _Persistent Storage by a
MSH that receives that Message.

108
109
110

111
112

113

114
115
116

117

118

119
120

121
122
123
124
125

126
127
128

129
130

A MSH SHOULD NOT resend a message with the same Messageld to a receiving MSH if the
elapsed time indicated by persistDuration has passed since the message was first sent as the
receiving MSH will probably not treat it as a duplicate.

If a message cannot be sent successfully before persistDuration has passed, then the MSH
should report a delivery failure (see section 1.5).

1.21.3 ebXML Reliable Messaging Protocol

The ebXML Reliable Messaging Protocol described in this section MUST be followed if the
deliverySemantics parameter/element is set to OnceAndOnlyOnce and the
ReliableMessagingMethod parameter/element is set to eb XML (the default).

The ebXML Reliable Messaging Protocol is illustrated by the figure below.

From Party To Party
Application Message > Application
1. Message
MSH < > MSH

2. Ack
Message

Acknowledgement
Message

From Party To Party

)) Message ;)
Application being > Application
t Acknowledged ¢
T Message
MSH > MsH

4 2.M je

Acknowledgement
Message

Figure 110-1 Indicating that a message has been received

The receipt of the acknowledgment message indicates that the message being acknowledged
has been sentreliablysuccessfully received and either processed or persisted by the receiving

MSH to which the message was sent.

An acknowledgment message MUST contain a MessageData element with a RefToMessageld
that contains the same value as the Messageld element in the message being acknowledged.

131
132
133

134
135
136
137

138

139
140

141

142
143

144
145
146
147
148

149
150

151
152

153
154

155

156
157

158
159

160

161
162
163
164

165

166
167

168
169

1211131 Sending Message Behavior

If a MSH is given data by an application that needs to be sent reliably then the MSH MUST do the
following:

1) Create a message from components received from the application that includes:
a) deliverySemantics setto OnceAndOnlyOnce, and
b) a RoutingHeader element that identifies the sender and the receiver URIs
12)Save the message in persistent storage (see section 1.1.110.1.1)
2)3)Send the message {the-message being-acknowledged)-to the Receiver MSH

3)4)Wait for the Receiver MSH to return an acknowledgment message and, if it does not, then
resend the identical message as described in section 1.3.2.210.2.1.3

1212132 Receiving Message Behavior

If deliverySemantics on the received message is set to OnceAndOnlyOnce then do the
following:

21)Check to see if the message is a duplicate (e.g. there is a message in persistent storage that
was received earlier that contains the same value for the Messageld)

3)2)If the message is not a duplicate then do the following:

a) Save the Messageld of the received message in persistent storage. As an
implementation decision, the whole message MAY be stored if there are other reasons
for doing so- ‘
are-used-</DB>

b) If the received message contains a RefToMessageld element then do the following:

i) Look for a message in persistent storage that has a Messageld that is the same as
the value of RefToMessageld on the received Message

i) If amessage is found in persistent storage then mark the persisted message as
delivered

170
171
172

173
174

175
176
177

178
179

180
181

182
183
184

185
186

187
188
189
190

191

192
193
194
195
196
197

198
199
200

201
202

203

204
205
206

207
208

209
210

211
212
213
214

c) Generate an Acknowledgement Message in response (see section 1.3.2.1). <DB>This is
a simpler version of the text in version 0.93 and relies more on interpretation of other
parts of the spec.</DB>

A3)If the message is a duplicate, then do the following:

a) Look in persistent storage for a response to the received message (i.e. it contains a
RefToMessageld that matches the Messageld of the received message) that was most
recently sent to the MSH that sent the received message (i.e. it has a RoutingHeader
element with the greatest value of the Timestamp.)<DB>Note it is not yet agreed
whether the most recent message should be sent. Whatever message is sent, we need
to define rules for it.</DB>

b) If no message was found in persistent storage then ignore the received message as
either no message was generated in response to the message, or the processing of the
earlier message is not yet complete

c) If a message was found in persistent storage then resend the persisted message back to
the MSH that sent the received message.

1.3.2.1 Generating an Acknowledgement Message

An Acknowledgement Message MUST be generated whenever a message is received with:
deliverySemantics set to OnceAndOnlyOnce and
reliableMessagingMethod set to eb XML (the default).

As a minimum, it MUST contain a MessageData element with a RefToMessageld that contains
the same value as the Messageld element in the message being acknowledged.

If ackRequested in the RoutingHeader of the received message is set to Signed or Unsigned
then the acknowledgement message MUST also contain an Acknowledgement element.

Depending on the value of the syncReplyMode parameter, the Acknowledgement Message can
also be sent at the same time as the response to the processing of the received message. In this
case, the values for the Header elements of the Acknowledgement Message are set by the
designer of the Service (see section Error! Reference source not found.).

215
216

217
218

219

220
221

222
223

224
225

226

227

228
229
230
231

232
233

234

235
236

237

238
239

If an Acknowledgment element is being sent on its own, then the value of the Head er elements

MUST be set as follows:

1) The Service element MUST be set to:
http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment

2) The Action element MUST be setto Acknowledgment.

3) The From element MUST be set to the ReceiverURI from the last RoutingHeader in the
message that has just been received

4) The To element MUST be set to the SenderURI from the last RoutingHeader in the
message that has just been received

5) The RefToMessageld element MUST be set to the Messageld of the message that has just
been received

6) The deliverySemantics MUST be set to BestEffort

1.21.31.3.2.2 Resending Lost Messages and Duplicate Filtering

This section describes the behavior that is required by the sender and receiver of a message in
order to handle when messages are lost. A message is "lost" when a sending MSH does not
receive a response to a message. For example, it is possible that a message being

acknowledged-was lost, for example:

Party A Party B

Message

L o L
Application < Ak Ie%ged Application
Message X
MSH > x MSH
Msg. Lost|

Figure 110-2 Lost “Message Being Acknowledged”

It is also possible that the Acknowledgment Message was lost, for example ...

Party A Party B
Application Application
v _|o Y

Message X >
MSH Message Y MSH
X <«
Msg. Lost @

Acknowledgement
Message

Figure 110-3 Lost Acknowledgment Message

The rules that apply are as follows:

5)1)The Sending MSH MUST resend the original message if an Acknowledgment Message has

not been received from the Receiving MSH and either of the following are true:

240
241

242

243
244

245
246

247
248
249

250
251
252
253
254

255

256
257
258
259
260
261
262
263
264
265

266
267
268
269

270

271
272

a) The message has not yet been resent and at least the time specified in the timeout
parameter has passed since the first message was sent, or

b) The message has been resent, and the following are both true:

i) At least the time specified in the retrylnterval has passed since the last time the
message was resent, and

i) The message has been resent less than the number of times specified in the retries
Parameter

M2)If the Sending MSH does not receive an Acknowledgment Message after the maximum
number of retries, the Sending MSH SHOULD notify the application and/or system
administrator function.

5)3)If the Sending MSH detects a communications protocol error that is unrecoverable at the
transport protocol level then the Sending MSH SHOULD first attempt to resend the message
using the same transport protocol until the number of retries has been reached, and then
again, using a-different communications protocols, if the CPA allows this. If these are not
successful, then notify the From Party of the failure to deliver as described in section 1.510.5.

1.3.2.3 Duplicate Message Handling

In this context:
an identical message is a message that contains, apart from perhaps an additional
RoutingHeader element, the same ebXML Header and ebXML Payload as the earlier
message that was sent.
a duplicate message is a message that contains the same Messageld as an earlier
message that was received.
the most recent message is the message with the latest Timestamp in the MessageData
element that has the same RefToMessageld as the duplicate message that has just been
received.<DB>Chris Ferris, disagrees with resending the latest message. DB & CF need to
go through this. This is carried over from the last version of the spec. </DB>

Note that the Communication Protocol Envelope MAY be different. This means that the same
message MAY be sent using different communication protocols and the reliable messaqging
behavior described in this section will still apply. The ability to use alternative communication
protocols is specified in the CPA and is an OPTIONAL implementation specific feature.

Party A Party B
MSH @D esea MSH
ge X
Application [€®------ 5 Pr-=:-------m€P Application
Timeout! x < Message \(? -
|\' Msg| Lost @
- Meessage‘ x

Msg. Lost

U @ Message X
Tk -, Ignore

< < - Duplicate
Message Y @

Figure 110-4 Resending Lost Messages

273
274
275
276

277
278

279
280
281

282
283
284
285

286
287

288
289
290
291
292
293
294
295
296
297

298
299
300
301

302

303
304
305
306
307
308
309

310
311

The diagram above shows the behavior that MUST be by the sending and receiving MSH that are

sent with dellvervSemantlcs of OnceAndOnIvOnce tgugwed—by—th%sendepef—ﬂ%message

Specmcally

8)1)The sender of the message being-acknowledged-(e.g. Party A) MUST re-send the identical
message to-the To Party MSH (e g Party B) if no Acknowledgment Message is received
A2)The recipient of the message being acknowledged (e.g. Party B), when it receives a duplicate

message, MUST re-send to the sender of the message being-acknowledged-(e.g. Party A), a
message identical to the most recent message that was sent to the recipient (i.e. Party A)

8)3) The recipient of the message being-acknowledged-(e.g. Party AB) MUST ignhore-duplicate
messages-and-notNOT forward them a second time to the application, the-nextMSH

<DB>pext MSH-is-multi-hopshould-not be here</DB>or other process that ultimately needs

to receive-process received messagesthem.

12.21.3.3 Multi-hop Reliable Messaging

<DB>I've just concluded that we can probably do away with the complete Munlti-hop reliable
messaging section if we consider the intermediary receiving MSH as acting as a proxy for the To
Party MSH. This works since:
The Acknowledgement message contains a From element that identifies the organization
that generated the Acknowledgement element if it is not the To Party.
The Routing Header can provide an audit trail (or not) if you allow multiple entries. After all, if
some of the hops are not ebXML, then you cannot generate an audit trail for them

The big advantage is that it makes the behavior of the From Party the same whether or not multi-
hop is being used. The text below illustrates how this could work.</DB>

312
313
314
315

316

317
318

319
320

321
322
323
324
325

326

327
328

329

Multi-hop reliable Messaging involves the sending of a message reliably from the From Party to
the To Party via an intermediary that acts as a "black box". This means that the sender of a

message does not need to know the address or protocols used to deliver the message to the final

destination.

Multi-hop Reliable Messaging can occur either with or =

2without Intermediate latermediate

Ackn
Party A Party B Party C
Application Application
t o BLACK t
1
Message X . BOX Message X »_
MSH J < MSH

Message Y Message Y

owledgments—or

2with-Intermediate-Acknowledgments.

An Intermediary knows that Multi-hop Reliable Messaging with Intermediate Acknowledgments

applies if the received message contains ackRequested set to Signed or UnSigned.

1.3.3.1 Multi-hop Reliable Messaging without Intermediate Acknowledgments

This is illustrated by the diagram below.

Black Box

Party A Party B Party C
o Routing o
Application Application Application
: ot A ¢
Message X . _______ _— Message X [~
MSH MSH| | MSH] . MSH
Message Y Message Y

Figure 1-5 Multi-hop Reliable Messaging without Intermediate Acknowledgments

In this case, the intermediary (Party B) is acting as a proxy for the To Party (Party C).

330
331

332

333
334

335
336
337
338

339
340

341
342

343
344

345
346
347

348

349

350
351

1.3.3.2 Multi-hop Reliable Messaging with Intermediate Acknowledgments

This is illustrated by the diagram below.

Black Box

@

@

Party A Party B Party C
o Routing o
Application Application Application
! ot X ¢
MessageX | o —FV I Message X [
MSH Masa] Tvisi] > MSH
Acknowledgemgnt Acknowledgement
Message Message
©) @
Party A Party B Party C
Application Application
BLACK
¢ e s v
Message X > BOX Message X ’- -
MSH < MSH
Acknowledgement Acknowledgement
Message Message

Figure 1-6 Multi-hop Reliable Messaging with Intermediate Acknowledgments

In this case, the Intermediary (Party B) accepts responsibility for delivering the message to its

final destination by sending an Acknowledgement Message back to the sender of the original

message. As far as sending and receiving of messages, the Intermediary behaves the same as a

To Party with respect to the sending and receiving of messages.

If the Intermediary cannot, for some reason, deliver the message successfully to To Party (Party

C), then it sends a Deli very Failure message to the From Party (Party A) — see section 1.5.

352

o s | | : _

Party A Party B Party C Party D
o Routing Message Routing -
Application Application P Application Application
$ o |t A\ € :
........... »l -
MSH .TMS_H_ . MSH <« MSH

Message Y

Acknowledgement
Message

Message Y

390
391
392

393
394
395

396

Party A Party B Party C Party D

Message

o Routing ess o
Application Application et Application Application

2 1V A A 0 e P W A A ¥ N U :

¢ I» <«' MSH
Message T 3, L Message Y 5, _
(IntermediateAck . (Delivery Receipt)

MSH MSH| | MSH Message Y MSH4-{ MSH
AcknowledgemeD
Message

Routing

) 4

(Delivery Receipt)

Message Y (8 LN

397 @ (Int;;mediateg\ck) T
398 i i

399
400
401
402
403
404

405
406

407
408
409
410

411
412

413
414
415
416

417

418
419

420
421

422
423

424
425

426
427
428

429
430
431
432

433
434

435
436

437
438

439
440

441
442

443
444

445
446

447
448
449

450
451
452

453

454
455
456

457
458
459
460
461
462
463

464
465

1.31.4 ebXML Reliable Messaging using Commercial Software

ProductsQueding Fransports

This section describes the differences that apply if commercial software products a-Queuing
Transportis-are used to implement Reliable Messaging.

Use of the ebXML Reliable Messaging Protocol is identified by the ReliableMessagingMethod
parameter being set to Transport-Tra for transmission-{eithera-Single-hop-ora-Multi-hop)

If Reliable Messaging using a commercial software product QueuingTransport-is being used then
the following rules apply:

3)1)Implementations should use the facilities of the commercial software product Queuing
TFransport-to determine if the message was delivered

4)2)If the software product being used reports that a messaqe cannot be delivered thenlfan
= 2 = = he the From Party

466

467
468
469
470
471
472

473
474
475
476
477

478
479

480
481

482
483
484
485
486
487
488
489

490
491
492
493
494
495
496
497

498
499

1.5 Failed Message Delivery

In the event that a MSH or other process that is involved, in some capacity in the delivery of a

message that is sent with deliverySemantics set to OnceAndOnlyOnce has determined that the

message cannot be delivered to the application or other process that has been designated to

process the message, then that MSH or process SHOULD send a delivery failure notification

message to the From Party that sent the message. The delivery failure notification message

contains:

Party A Party B Party C Party D
o Routing Message Routing o
Application Application et Application Application
t @ N X f x @ N X f x @ Message X . t
~ | Y MSH
g T
4 (Intxemsgtgg?elck 2 SXLSIS'}[QAEnS:;g‘eEXCk > (De:\i/\lleessal'«g”sc\;ipt)(9
MSH MSH | | MSH|T* MSH| | MSH
Acknowledgement
Message

a From Party that identifies the Party that detected the problem

a To Party that identifies the From Party that created the message that could not be
delivered

a Service element and Action element set as described in Error! Reference source not
found.31.5

a QualityOfServicelnfo element with deliverySemantics set to the same value as the
deliverySemantics on the message that could not be delivered

an Error element with a severity of:
- Error if the Party that detected the problem could not even transmit the message (e.g.

Transmission-3-was-impaossiblethe communications transport was not available)

- Warning if the message {e-g—Message X-inTransmission-3)-was transmitted, but no

acknowledgment message was received. This means that the message probably was not
delivered although there is a small probability that it was

an ErrorCode of DeliveryFailure

500
501
502
503
504
505

506
507

508

509
510

511
512

513
514

515

516
517
518
519
520

521
522

523
524

525
526

527

528
529

530
531

532
533

Party A Party B Party C Party D
o Routing Message Routing o
Application Application Ackrovieied Application Application
o |2 Vo NS Ao |

4:’ \‘; P 4:' < MSH
e awe) ’f(.myfﬁf:;gsexck D eessage Y (&
Bg. Lost
MSH Mess_ageU@ MSH || MSH [T° MSH| | MSH
Error=DeliveryFailed) Tlmegut n

Delivery

Message V
(IntermediateAck)

1 Failed !!

Acknowledgement

534
535
536
537

538
539

540
541

542

543
544

545

546
547
548

549

550
551
552

553

554
555

556

557
558

559
560

561

562
563
564
565
566
567
568

569
570
571
572

573
574

575

576
577

578
579

580
581
582

583
584
585

586
587
588
589
590

591

592
593
594

595

596
597
598

599

600
601

602

603
604

605
606
607
608
609
610
611

612
613

614
615
616
617

618
619

620

621
622
623

624

625
626
627

628
629
630
631
632
633
634

635

636
637
638

639
640

641
642
643

644
645
646
647

648

649
650
651
652
653
654
655

656
657

658

659
660
661

662

663
664
665
666
667
668
669

670
671
672
673

674

675
676
677

678

679
680
681

682
683
684
685
686

687
688

seconds-Parameters that need to be specified in the
CPA

<DB>The following (or something similar) is not part of the TRP spec but needs to be included in
the CPA spec.</DB>

2.1.1.1 Delivery Receipt Requested

The deliveryReceiptRequested parameter may be present as either an element within the
ebXMLHeader element or as a parameter within the CPA. See section Error! Reference source
not found. for more information.

2.1.1.2 Delivery Receipt Provided

The DeliveryReceiptProvided parameter indicates whether a To Party can provide an
acknowledgment message with a type attribute of deliveryReceipt in response to a message.
Valid values are:

Signed - indicates that only a signed Delivery Receipt can be provided

Unsigned - indicates only an unsigned Delivery Receipt can be provided,

Both - indicates that either a signed or an unsigned Delivery Receipt can be provided, or
None - indicates that the To Party does not create Delivery Receipts

If a MSH receives a Message where deliveryReceiptRequested is in not compatible with the
value of DeliveryReceiptProvided then the MSH MUST return an Error Message to the From
Party MSH, reporting that the DeliveryReceiptProvided is not supported. This must contain an
errorCode set to NotSupported and a severity of Error.

2.1.1.3 Reliable Messaging Methods Supported

The reliableMessagingMethodsSupported parameter is a list of the methods that a MSH uses
to support Reliable Messaging. It must be a URI. The URI for the ebXML Reliable Messaging
Protocol described in section 1) is http://www.ebxml.org/namespaces/reliableMessaging

2.1.1.4 PersistDuration

persistDuration is the minimum length of time, expressed as a [XMLSchema] timeDuration, that
data from a Message that is sent reliably, is kept in Persistent Storage by a MSH that receives
that Message.

In order to support the filtering of duplicate messages, a Receiving MSH MUST, as a minimum,
save the Messageld in persistent storage. It is also RECOMMENDED that the following be kept
in Persistent Storage:
the complete message, at least until the information in the message has been passed to the
application or other process that needs to process it
the time the message was received, so that the information can be used to generate the
response to a Message Status Request (see section Error! Reference source not found.)

689

690
691
692

693
694

695
696
697

698
699
700
701

702

703
704
705

706
707

708

709
710
711

712
713

714
715

716
717
718
719
720
721
722
723

724
725

726

727
728
729

persistDuration is specified in the CPA.

A MSH SHOULD NOT resend a message with the same Messageld to a receiving MSH if the
elapsed time indicated by persistDuration has passed since the message was first sent as the
receiving MSH will probably not treat it as a duplicate.

If a message cannot be sent successfully before persistDuration has passed, then the MSH
should report a delivery failure (see section 1.5).

Note that implementations may determine that a messaqge is persisted for longer than the time
specified in persistDuration, for example in order to meet legal requirements or the needs of a
business process. This information is recorded separately within the CPA.

In order to ensure that persistence is continuous as the message is passed from the receiving
MSH to the process or application that is to handle it, it is RECOMMENDED that a message is
not removed from persistent storage until the MSH knows that the data in the message has been
received by the process/application.

2.1.1.5 MSH Time Accuracy

The mshTimeAccuracy parameter in the CPA indicates the minimum accuracy that a Receiving
MSH keeps the clocks it uses when checking, for example, TimeTolLive. It's value is in the format
“mm:ss” which indicates the accuracy in minutes and seconds.

3 Acknowledgement element

Changes required to the acknowledgement element

8.93.1 Acknowledgment Element

The Acknowledgment element is an optional element that is used by one Message Service
Handler to indicate that another Message Service Handler has received a message.
For clarity two terms are defined:

message being acknowledged. This is the Message that is has been received by a MSH that
is now being acknowledged

acknowledgment message. This is the message that acknowledges that the message being
acknowledged has been received.

The message being acknowledged is identified by the RefToMessageld contained in the
MessageData element contained within the Header Element of the acknowledgment message
containing the value of the Messageld of the message being acknowledged.

The Acknowledgment element consists of the following:
a Timestamp element
a From element

2atype attribute

a signed attribute

8913.1.1 Timestamp element
No change
89.23.1.2 From element

This is the same element as the From element within Header element (see section Error!
Reference source not found.8-4-1). However, when used in the context of an Acknowledgment
Element, it contains the identifier of the Party that is generating the acknowledgment message.

730
731

732
733

734
735
736

737

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

757
758
759
760
761
762
763
764
765
766
767
768

769

770
771

If the From element is omitted then the Party that is sending the element is identified by the From
element in the Header element.

8.933.1.3 type attribute
delete this section

8.943.1.4 signed attribute

No change

4 Updated XML Schema

This specifies the only required change to the Schema ...
<!-- ACKNOALEDGEMENT -- >
<xsd: el enent nane="Acknow edgnent " >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref="Ti nestanp"/>
<xsd: el enent ref="Fronl m nCccurs="0" maxQccurs="1"/>
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
<xsd:attribute name="type" use="default" val ue="DeliveryReceipt"/>
<xsd: si npl eType>
<xsd:restriction base="xsd: NMTOKEN' >
<xsd: enuner ati on val ue="Del i ver yRecei pt"/>
<xsd: enuner ati on val ue="Int er nedi at eAck"/>
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: attribute nane="si gned" type="xsd: bool ean"/ >
</ xsd: conpl exType>
</ xsd: el enent >

..to...
<!-- ACKNOM.EDGEMENT -->
<xsd: el enent nane="Acknow edgnent " >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref="Ti nestanp"/>
<xsd: el enent ref="Fronm' m nCccurs="0" maxCQccurs="1"/>
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
<xsd: attribute nane="si gned" type="xsd: bool ean"/>
</ xsd: conpl exType>
</ xsd: el enent >

5 Non-normative examples of multi-hop

This section is not to be included in the spec but shows a humber of alternative message flows
that illustrate how the black box approach and multi-hop could work.

772
773

774
775

Black Box
Party A Party B Party C
o Routing o
Application Application Application
X X
A ! A]
. v MessageX | o —F — Message X _f/J 7
MSH.__| MSH_| | MSH| < M8H
Message Y Message Y
Black Box
Party A Party B Party C
o Routing o
Application Application Application
A .
AR N I
. v MessageX | o —F — Message X [
MSH.__ MSH| | MSH] < MSH
Acknowledgemgnt Acknowledgement
Message Message
@ @

776
77

778

Black Box

Party A Party B Party C
o Routing o
Application Application Application
)~ h |
vy © f E HE :
N - N MessageX | ol —F¥ — Message X B _'/ ;:
MSH. | ¢ gl P
Message Y .. Acknowledgement N
g Messag@ 7
MSH [*{MSH MSH
\\ < Message Y @ e 4
» Acknowledgement >
Message
Black Box
Party C Party B Party A
o Routing o
Application Application Application
< A |
4 ! 0 Ao
1 . Message X Message X - 4 l
! = N P {
] P P] o« MSH
! Acknowledgemerjt g Message Y
% Message -
MSH MSH{"| MSH
\\\>_< @ Message Y "
Acknowledgement »
Message

