
1 Reliable Messaging 1

Reliable Messaging defines an interoperable protocol such that the two Messaging Service 2
Handlers (MSH) operated by a From Party and a To Party can “reliably” exchange messages that 3
are sent using “reliable messaging” semantics. 4

“Reliably” means that the From Party can be highly certain that the message sent will be 5
delivered to the To Party. If there is a problem in sending a message then the sender resends the 6
message until either the message is delivered, or the sender gives up. If the message cannot be 7
delivered, for example because there has been a catastrophic failure of the To Party’s system, 8
then the From Party is informed. 9

A From Party is informed by a To Party that a message has been delivered by the To Party 10
returning an Acknowledgement Message. <DB>Added this sentence here since we need to 11
describe an acknowledgement message early in the chapter. Currently it is defined after it is 12
used.</DB> 13

1.1.1 Persistent Storage and System Failure 14

A MSH that supports Reliable Messaging MUST keep messages that are sent or received reliably 15
in persistent storage. In this context persistent storage is a method of storing data that does not 16
lose information after a system failure or interruption. 17

This specification recognizes that different degrees of resilience may be realized depending on 18
the technology that is used to persist the data. However, as a minimum, persistent storage that 19
has the resilience characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly 20
RECOMMENDED though that implementers of this specification use technology that is resilient to 21
the failure of any single hardware or software component. 22

Even after a system interruption or failure, a MSH MUST ensure that messages in persistent 23
storage are processed in the same way as if the system failure or interruption had not occurred. 24
How this is done is an implementation decision. 25

In order to support the filtering of duplicate messages, a Receiving MSH SHOULD, save the 26
MessageId in persistent storage. It is also RECOMMENDE D that the following be kept in 27
Persistent Storage: 28
• the complete message, at least until the information in the message has been passed to the 29

application or other process that needs to process it 30
• the time the message was received, so that the information can be used to generate the 31

response to a Message Status Request (see section Error! Reference source not found.) 32

1.1.2 Methods of Implementing Reliable Messaging 33

Support for Reliable Messaging can be implemented in one of the following two ways: 34
• using the ebXML Reliable Messaging protocol, or 35
• using ebXML Header and Message structures together with commercial software products 36

that are designed to provide reliable delivery of messages using alternative 37
protocols.<DB>Change elsewhere</DB> 38

Each of these are described belowlater. 39

1.2 Reliable Messaging Parameters 40

This section describes the parameters required to control reliable messaging. This parameter 41
information is contained in the following: 42
• the ebXML Message Header, or 43

• the CPA that governs the processing of a message. 44

The table below indicates where these parameters may be set. 45

Parameter CPA Header

deliverySemantics Yes Yes

syncReplyMode Yes Yes

timeToLive Yes Yes

reliableMessagingMethod No Yes

ackRequested No Yes

timeout Yes No

retries Yes No

retryInterval Yes No

persistDuration Yes No

In this table, the following interpretation of the columns should be used: 46

1) if the CPA column contains a Yes then it indicates that the value that is present in the CPA 47
determines the processing semantics 48

2) if the CPA column contains a No then it indicates that the parameter value is never specified 49
in the CPA 50

3) <DB>I think we have four alternative interpretations here I prefer option a)<DB>: 51

a) if the Header column contains a Yes then it indicates that the parameter value MAY be 52
specified in the ebXML Header document. If it is present, then it overrides the value in the 53
CPA 54

b) if the Header column contains a Yes and the value of the header element differs from the 55
equivalent in the CPA use the value in the header and report an error with severity of 56
Warning and an errorCode of Inconsistent 57

c) if the Header column contains a Yes and the value of the header element differs from the 58
equivalent in the CPA use the value in the CPA and report an error with severity of 59
Warning and an errorCode of Inconsistent 60

d) if the Header column contains a Yes then the value of the header element MUST be set 61
to the same value as in the CPA. If it differs, then report an error with severity of Error 62
and an errorCode of Inconsistent<DB> 63

1.2.1 Delivery Semantics 64

The deliverySemantics parameter may be present as either an element within the 65
ebXMLHeader element or as a parameter within the CPA. See section Error! Reference source 66
not found. for more information. 67

1.2.2 Sync Reply Mode 68

The syncReplyMode parameter may be present as either an element within the ebXMLHeader 69
element or as a parameter within the CPA. See section Error! Reference source not found. for 70
more information. 71

1.2.3 Time To Live 72

The TimeToLive element may be present within the ebXMLHeader element see section Error! 73
Reference source not found. for more information. 74

1.2.4 Reliable Messaging Method 75

The ReliableMessagingMethod parameter indicates the requested method for Reliable 76
Messaging that will be used when sending a Message. Valid values are: 77

• ebXML in this case the ebXML Reliable Messaging Protocol as defined in section 1) is 78
followed, or 79

• Transport, in this case a commercial software product is used for reliable delivery of the 80
message, see section1.4. 81

1.2.5 Ack Requested 82

The AckRequested parameter is used by the Sending MSH to request that the Receiving MSH 83
that receives the Message returns an acknowledgment message with an Acknowledgment 84
element with a type of Acknowledgment.. 85

Valid values for IntermediateAckRequested are: 86

• Unsigned - requests that an unsigned Acknowledgement is requested 87

• Signed - requests that a signed Acknowledgement is requested, or 88

• None - indicates that no Acknowledgement is requested. 89

The default value is None. 90

1.2.6 Timeout Parameter 91

The timeout parameter is an integer value that specifies the minimum time in seconds 92
<DB>Perhaps this should be an XML Schema TimeDuration?. </DB> that the Sending MSH 93
MUST wait for an Acknowledgment Message before first resending a message to the Receiving 94
MSH. 95

1.2.7 Retries Parameter 96

The retries Parameter is an integer value that specifies the maximum number of times a Sending 97
MSH SHOULD attempt to redeliver an unacknowledged or undelivered message using the same 98
Communications Protocol. 99

1.2.8 RetryInterval Parameter 100

The retryInterval parameter is an integer value specifying, in seconds, <DB>Perhaps this should 101
be an XML Schema TimeDuration?. </DB> the minimum time the Sending MSH MUST wait 102
between retries, if an Acknowledgment Message is not received. 103

1.2.9 PersistDuration 104

The persistDuration parameter s the minimum length of time, expressed as a [XMLSchema] 105
timeDuration, that data from a Message that is sent reliably, is kept in Persistent Storage by a 106
MSH that receives that Message. 107

A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the 108
elapsed time indicated by persistDuration has passed since the message was first sent as the 109
receiving MSH will probably not treat it as a duplicate. 110

If a message cannot be sent successfully before persistDuration has passed, then the MSH 111
should report a delivery failure (see section 1.5). 112

1.21.3 ebXML Reliable Messaging Protocol 113

The ebXML Reliable Messaging Protocol described in this section MUST be followed if the 114
deliverySemantics parameter/element is set to OnceAndOnlyOnce and the 115
ReliableMessagingMethod parameter/element is set to ebXML (the default). 116

The ebXML Reliable Messaging Protocol is illustrated by the figure below. 117

To Party

MSH

Application

From Party

MSH
1. Message

2. Ack
Message

Application Message

Acknowledgement
Message

 118

To Party

MSH

Application

From Party

MSH
1. Message

2. Message

Application
Message

being
Acknowledged

Acknowledgement
Message

 119

Figure 110-1 Indicating that a message has been received 120

The diagram above illustrates two terms that are used in the remainder of this section: 121
? message being acknowledged. This is the Message that needs to be sent reliably and therefore 122

needs to be acknowledged 123
? acknowledgment message. This is the message that acknowledges that the message being 124

acknowledged has been received. 125

The receipt of the acknowledgment message indicates that the message being acknowledged 126
has been sent reliablysuccessfully received and either processed or persisted by the receiving 127
MSH to which the message was sent. 128

An acknowledgment message MUST contain a MessageData element with a RefToMessageId 129
that contains the same value as the MessageId element in the message being acknowledged. 130

A Message can be sent reliably either over: 131
? a Single-hop i.e. the sending of a message directly from the From Party’s MSH to the To Party’s 132

MSH without passing through any intermediate MSHs. 133
? Multi-hops i.e. the sending of a message indirectly from the From Party’s MSH to the To Party’s 134

MSH via one or more intermediate MSHs. 135
Single-hop Reliable Messaging is described first followed by Multi-hop Reliable Messaging. Note 136
that Multi-hop Reliable Messaging is an extension of Single-hop reliable Messaging. 137

1.2.1Single-hop Reliable Messaging 138

This section describes the REQUIRED behavior of a Message Service Handler (MSH) that is 139
sending and/or receiving messages that support the ebXML Reliable Messaging Protocol. 140

1.2.1.11.3.1 Sending Message Behavior 141

If a MSH is given data by an application that needs to be sent reliably then the MSH MUST do the 142
following: 143

1) Create a message from components received from the application that includes: 144

a) deliverySemantics set to OnceAndOnlyOnce, and 145

b) a RoutingHeader element that identifies the sender and the receiver URIs 146

1)2)Save the message in persistent storage (see section 1.1.110.1.1) 147

2)3)Send the message (the message being acknowledged) to the Receiver MSH 148

3)4)Wait for the Receiver MSH to return an acknowledgment message and, if it does not, then 149
resend the identical message as described in section 1.3.2.210.2.1.3 150

It is RECOMMENDED that messages that are sent reliably include deliveryReceiptRequested 151
set to Signed or UnSigned. 152

If the message does not need to be sent reliably, then deliverySemantics MUST be set to 153
BestEffort (the default). 154

1.2.1.21.3.2 Receiving Message Behavior 155

If deliverySemantics on the received message is set to OnceAndOnlyOnce then do the 156
following: 157

2)1)Check to see if the message is a duplicate (e.g. there is a message in persistent storage that 158
was received earlier that contains the same value for the MessageId) 159

3)2)If the message is not a duplicate then do the following: 160

a) Save the MessageId of the received message in persistent storage. As an 161
implementation decision, the whole message MAY be stored if there are other reasons 162
for doing so.<DB>Need to re-look at how duplicates are detected if sequence numbers 163
are used. </DB> 164

b) If the received message contains a RefToMessageId element then do the following: 165

i) Look for a message in persistent storage that has a MessageId that is the same as 166
the value of RefToMessageId on the received Message 167

ii) If a message is found in persistent storage then mark the persisted message as 168
delivered 169

c) Generate an Acknowledgement Message in response (see section 1.3.2.1). <DB>This is 170
a simpler version of the text in version 0.93 and relies more on interpretation of other 171
parts of the spec.</DB> 172

c)If deliveryReceiptRequested is set to Signed or UnSigned then create an Acknowledgment 173
element with type set to DeliveryReceipt that identifies the received message 174

d)If syncReplyMode is set to True then pass the data in the received message to the 175
application or other process that needs to process it and wait for the application to 176
produce a response. 177

e)If deliveryReceiptRequested is set to Signed or UnSigned, or syncReplyMode is set to 178
True then do the following: 179

i)Create a RoutingHeader element that identifies the sender and the receiver URIs 180

ii)Set the RefToMessageId to the value of the MessageId in the received message 181

iii)Create a message from the response generated by the application (if any), the 182
Acknowledgment element (if any) and the RoutingHeader that includes 183
deliverySemantics set to OnceAndOnlyOnce 184

iv)Save the message in persistent storage for later resending 185

v)Send the message back to the Sending MSH 186

f)If syncReplyMode is set to False then pass the data in the received message to the 187
application or other process that needs to process it. Note that, depending on the 188
application, this can result in the application generating another message to be sent (see 189
previous section). 190

4)3)If the message is a duplicate, then do the following: 191

a) Look in persistent storage for a response to the received message (i.e. it contains a 192
RefToMessageId that matches the MessageId of the received message) that was most 193
recently sent to the MSH that sent the received message (i.e. it has a RoutingHeader 194
element with the greatest value of the Timestamp.)<DB>Note it is not yet agreed 195
whether the most recent message should be sent. Whatever message is sent, we need 196
to define rules for it.</DB> 197

b) If no message was found in persistent storage then ignore the received message as 198
either no message was generated in response to the message, or the processing of the 199
earlier message is not yet complete 200

c) If a message was found in persistent storage then resend the persisted message back to 201
the MSH that sent the received message. 202

1.3.2.1 Generating an Acknowledgement Message 203

An Acknowledgement Message MUST be generated whenever a message is received with: 204
• deliverySemantics set to OnceAndOnlyOnce and 205
• reliableMessagingMethod set to ebXML (the default). 206

As a minimum, it MUST contain a MessageData element with a RefToMessageId that contains 207
the same value as the MessageId element in the message being acknowledged. 208

If ackRequested in the RoutingHeader of the received message is set to Signed or Unsigned 209
then the acknowledgement message MUST also contain an Acknowledgement element. 210

Depending on the value of the syncReplyMode parameter, the Acknowledgement Message can 211
also be sent at the same time as the response to the processing of the received message. In this 212
case, the values for the Header elements of the Acknowledgement Message are set by the 213
designer of the Service (see section Error! Reference source not found.). 214

If an Acknowledgment element is being sent on its own, then the value of the Header elements 215
MUST be set as follows: 216

1) The Service element MUST be set to: 217
http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment 218

2) The Action element MUST be set to Acknowledgment. 219

3) The From element MUST be set to the ReceiverURI from the last RoutingHeader in the 220
message that has just been received 221

4) The To element MUST be set to the SenderURI from the last RoutingHeader in the 222
message that has just been received 223

5) The RefToMessageId element MUST be set to the MessageId of the message that has just 224
been received 225

6) The deliverySemantics MUST be set to BestEffort 226

1.2.1.31.3.2.2 Resending Lost Messages and Duplicate Filtering 227

This section describes the behavior that is required by the sender and receiver of a message in 228
order to handle when messages are lost. A message is "lost" when a sending MSH does not 229
receive a response to a message. For example, it is possible that a message being 230
acknowledged was lost, for example: 231

û
Msg. Lost

Party B

MSH

Application

Party A

MSH
Message X

Application
Message

being
Acknowledged

1

 232

Figure 110-2 Lost “Message Being Acknowledged” 233

It is also possible that the Acknowledgment Message was lost, for example ... 234

û
Msg. Lost

Party B

MSH

Application

Party A

MSH
Message X

Application

Message Y

1

2

Acknowledgement
Message

 235

Figure 110-3 Lost Acknowledgment Message 236

The rules that apply are as follows: 237

5)1)The Sending MSH MUST resend the original message if an Acknowledgment Message has 238
not been received from the Receiving MSH and either of the following are true: 239

a) The message has not yet been resent and at least the time specified in the timeout 240
parameter has passed since the first message was sent, or 241

b) The message has been resent, and the following are both true: 242

i) At least the time specified in the retryInterval has passed since the last time the 243
message was resent, and 244

ii) The message has been resent less than the number of times specified in the retries 245
Parameter 246

4)2)If the Sending MSH does not receive an Acknowledgment Message after the maximum 247
number of retries, the Sending MSH SHOULD notify the application and/or system 248
administrator function. 249

5)3)If the Sending MSH detects a communications protocol error that is unrecoverable at the 250
transport protocol level then the Sending MSH SHOULD first attempt to resend the message 251
using the same transport protocol until the number of retries has been reached, and then 252
again, using a different communications protocols, if the CPA allows this. If these are not 253
successful, then notify the From Party of the failure to deliver as described in section 1.510.5. 254

1.3.2.3 Duplicate Message Handling 255

In this context: 256
• an identical message is a message that contains, apart from perhaps an additional 257

RoutingHeader element, the same ebXML Header and ebXML Payload as the earlier 258
message that was sent. 259

• a duplicate message is a message that contains the same MessageId as an earlier 260
message that was received. 261

• the most recent message is the message with the latest Timestamp in the MessageData 262
element that has the same RefToMessageId as the duplicate message that has just been 263
received.<DB>Chris Ferris, disagrees with resending the latest message. DB & CF need to 264
go through this. This is carried over from the last version of the spec. </DB> 265

Note that the Communication Protocol Envelope MAY be different. This means that the same 266
message MAY be sent using different communication protocols and the reliable messaging 267
behavior described in this section will still apply. The ability to use alternative communication 268
protocols is specified in the CPA and is an OPTIONAL implementation specific feature. 269

 270

Party BParty A

MSH MSHMessage X

Message Yû
Msg. Lost

Message X

Message X

Message Y

û
Msg. Lost

Timeout !!

Timeout !!

Ignore
Duplicate

Application Application
1

2

3

4

5

 271

Figure 110-4 Resending Lost Messages 272

The diagram above shows the behavior that MUST be by the sending and receiving MSH that are 273
sent with deliverySemantics of OnceAndOnlyOnce. followed by the sender of the message 274
being acknowledged (e.g. Message X) and the acknowledgment message (e.g. Message Y). 275
Specifically: 276

6)1)The sender of the message being acknowledged (e.g. Party A) MUST re-send the identical 277
message to the To Party MSH (e.g. Party B) if no Acknowledgment Message is received 278

7)2)The recipient of the message being acknowledged (e.g. Party B), when it receives a duplicate 279
message, MUST re-send to the sender of the message being acknowledged (e.g. Party A), a 280
message identical to the most recent message that was sent to the recipient (i.e. Party A) 281

8)3)The recipient of the message being acknowledged (e.g. Party AB) MUST ignore duplicate 282
messages and notNOT forward them a second time to the application, the next MSH 283
<DB>next MSH is multi-hop, should not be here. </DB>or other process that ultimately needs 284
to receive process received messagesthem. 285

<DB>The above also includes recipient behavior which is not part of sending behavior. Should be 286
in a separate section. </DB> 287

In this context: 288
? an identical message is a message that contains, apart from perhaps an additional 289

RoutingHeader element, the same ebXML Header and ebXML Payload as the earlier 290
message that was sent. 291

? a duplicate message is a message that contains the same MessageId as an earlier message 292
that was received. 293

? the most recent message is the message with the latest Timestamp in the MessageData 294
element that has the same RefToMessageId as the duplicate message that has just been 295
received.<DB>Chris Ferris, disagrees with resending the latest message. DB & CF need to 296
go through this. </DB> 297

Note that the Communication Protocol Envelope MAY be different. This means that the same 298
message MAY be sent using different communication protocols and the reliable messaging 299
behavior described in this section will still apply. The ability to use alternative communication 300
protocols is specified in the CPA. 301

1.2.21.3.3 Multi-hop Reliable Messaging 302

<DB>I've just concluded that we can probably do away with the complete Munlti-hop reliable 303
messaging section if we consider the intermediary receiving MSH as acting as a proxy for the To 304
Party MSH. This works since: 305
• The Acknowledgement message contains a From element that identifies the organization 306

that generated the Acknowledgement element if it is not the To Party. 307
• The Routing Header can provide an audit trail (or not) if you allow multiple entries. After all, if 308

some of the hops are not ebXML, then you cannot generate an audit trail for them 309

The big advantage is that it makes the behavior of the From Party the same whether or not multi-310
hop is being used. The text below illustrates how this could work.</DB> 311

Multi-hop reliable Messaging involves the sending of a message reliably from the From Party to 312
the To Party via an intermediary that acts as a "black box". This means that the sender of a 313
message does not need to know the address or protocols used to deliver the message to the final 314
destination. 315

Multi-hop Reliable Messaging can occur either with or : 316

? without Intermediate Intermediate 317
Ackn318

Party A

MSH
Message X

Application

Party B

Message Y

1

4

Party C

MSH

Application

Message X

Message Y

2

3

BLACK
BOX

319
owledgments, or 320

? with Intermediate Acknowledgments. 321

An Intermediary knows that Multi-hop Reliable Messaging with Intermediate Acknowledgments 322
applies if the received message contains ackRequested set to Signed or UnSigned. 323

1.3.3.1 Multi-hop Reliable Messaging without Intermediate Acknowledgments 324

This is illustrated by the diagram below. 325

Black Box
Party A

MSH
Message X

Application

Party B

MSH

Routing
Application

MSH
Message Y

1

4

Party C

MSH

Application

Message X

Message Y

2

3

 326

 327
Figure 1-5 Multi-hop Reliable Messaging without Intermediate Acknowledgments 328

In this case, the intermediary (Party B) is acting as a proxy for the To Party (Party C). 329

1.3.3.2 Multi-hop Reliable Messaging with Intermediate Acknowledgments 330

This is illustrated by the diagram below. 331

Black Box
Party A

MSH

Application

Party B

MSH

Routing
Application

MSH

Party C

MSH

Application

Message X

Acknowledgement
Message

1

2

Message X

Acknowledgement
Message

3

4

332

Party A

MSH
Message X

Application

Party B

Acknowledgement
Message

1

2

Party C

MSH

Application

Message X

Acknowledgement
Message

3

4

BLACK
BOX

 333

Figure 1-6 Multi-hop Reliable Messaging with Intermediate Acknowledgments 334

In this case, the Intermediary (Party B) accepts responsibility for delivering the message to its 335
final destination by sending an Acknowledgement Message back to the sender of the original 336
message. As far as sending and receiving of messages, the Intermediary behaves the same as a 337
To Party with respect to the sending and receiving of messages. 338

If the Intermediary cannot, for some reason, deliver the message successfully to To Party (Party 339
C), then it sends a Deli very Failure message to the From Party (Party A) – see section 1.5. 340

One reason for using Multi-hop Reliable Messaging with Intermediate Acknowledgments is when 341
the From Party that is sending a message is confident that the total time taken for ... 342
? the message being acknowledged to be sent to the To Party, and 343
? the acknowledgment message to be returned 344

... is likely to result in the From Party resending the message being acknowledged. <DB>Chris 345
thinks this is superfluous, David thinks it useful as it explains why you should do multi-hop and 346
helps an implementer decide when to use it. This requires further discussion. </DB> 347

Each of these is described below. 348

1.2.2.1Multi-hop Reliable Messaging without Intermediate Acknowledgments 349

Multi-hop Reliable Messaging without Intermediate Acknowledgment is identified by the 350
IntermediateAckRequested of the Routing Header for the hop being set to False (the default). 351

The overall message flow is illustrated by the diagram below. 352

Party A

MSH
Message X

Application

Party B

MSH

Routing
Application

MSH
Message Y

Message X

Message Y

1
2

56

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH
Message X

Message Y

3

4

Message
being

Acknowledged

Acknowledgement
Message

 353

Figure 10-5 Multi-hop Reliable Messaging without Intermediate Acknowledgments 354

This is essentially the same as Single-hop Reliable Messaging except that the Message passes 355
through multiple intermediate parties. This means that: 356
? the From Party (e.g. Party A) and the To Party (e.g. Party D) are the only parties that adopt the 357

Reliable Messaging behavior described in this section 358
? the intermediate parties (e.g. Parties B and C), just forward the messages they receive, they do 359

not undertake any Reliable Messaging behavior. 360

This is described in more detail below: 361

6)The From Party and the To Party adopt the sending message and receiving message behavior 362
described in sections 10.2.1.1 and 10.2.1.2 except that the From Party MSH (e.g. Party A) 363
sends to an Intermediate Party (e.g. Party B) a message (the message being acknowledged) 364
e.g. Message X in transmission 1, that contains 365

a)a QualityOfServiceInfo element with deliverySemantics set to OnceAndOnlyOnce 366

b)a RoutingHeader element that contains the SenderURI of the sender (e.g. the URL for 367
Party A’s MSH) and the ReceiverURI of the next recipient of the message (e.g. the URL 368
of Party B’s MSH) 369

9)Once the Intermediate Party (e.g. Party B or Party C) receives the message, they determine its 370
next destination (in the example above this could be done by the Routing Application) and 371
forward the message (e.g. Transmission 2 of Message X) to the next Party (e.g. either Party 372
C or Party D). Before sending the message they do the following: 373

a)transfer elements in the ebXML Header and Payload unchanged from the inbound 374
message to the outbound message except that, they 375

b)add a RoutingHeader element to the RoutingHeaderList that contains the SenderURI of 376
the next party to receive the message (e.g. the URL for Party C’s or Party D’s MSH) and 377
the ReceiverURI (e.g. the URL for Party B’s or Party C’s MSH) 378

10)If the Sending MSH (either at the From Party or at an Intermediate Party) does not receive an 379
Acknowledgment Message after the maximum number of retries, the Sending MSH SHOULD 380
notify the following of the delivery failure: 381

The application and/or system administrator function if the Sending MSH is the From Party 382
MSH, or 383

The Sending MSH of the From Party, if the Sending MSH is operated by an Intermediate 384
Party (see section 10.5) 385

11)The previous step then repeats until eventually the message (e.g. Message X) reaches its 386
final destination at the To Party (e.g. Party D) 387

12)Once the To Party receives the message (i.e. the message being acknowledged) they return 388
an acknowledgment message to the From Party through the Intermediate Parties.) 389

13)Steps 2 and 3 above then repeat until the acknowledgment message reaches the To Party 390
(e.g. Party A) 391

1.2.2.2Multi-hop Reliable Messaging with Intermediate Acknowledgments 392

Multi-hop Reliable Messaging with Intermediate Acknowledgments is similar to Multi-hop Reliable 393
Messaging without Intermediate Acknowledgment except that any of the Parties that are 394
transmitting a Message can request that the recipient return an Intermediate Acknowledgment. 395

This is illustrated by the diagram below. 396

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message Y

Message X

Message Y
(Delivery Receipt)

1 2

6

8

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X

Message Y
(Delivery Receipt)

4

5

Message
being

Acknowledged

Acknowledgement
Message

Message T
(IntermediateAck)

Message U
(Intermediate Ack)

3

7
 397

Figure 10-6 Multi-hop Reliable Messaging with Intermediate Acknowledgments 398

The main difference between Multi-Hop Reliable Messaging with Intermediate Acknowledgments 399
and the without is: 400
? any party may request an intermediate acknowledgment 401
? any party that either sends or receives a message that requests an intermediate 402

acknowledgment must adopt the reliable messaging behavior even if the 403
QualityOfServiceInfo element indicates otherwise. 404

The rules that apply to Multi-hop Reliable Messaging with Intermediate Acknowledgment are as 405
follows: 406

1)Any Party that is sending a message can request that the recipient send an Acknowledgment 407
Message that is an Intermediate Acknowledgment by setting the 408
IntermediateAckRequested of the RoutingHeader for the hop to Signed or Unsigned. 409
(e.g. Transmission 2 of Message X, or Transmission 6 of Message Y) 410

2)If a MSH that is not the To Party receives a message that requires an Intermediate 411
Acknowledgment (e.g. Transmission 2 of Message X, or Transmission 6 of Message Y) then: 412

a)If the MSH can identify itself as the ReceiverURI in the RoutingHeader for the hop, and an 413
Intermediate Acknowledgment is requested, then the MSH must return an 414
Acknowledgment Message (e.g. Transmission 3 of Message T, or Transmission 7 of 415
Message U) with: 416

i)The Service and Action elements set as in defined in section 10.4 417

ii)The From element contains the ReceiverURI from the last RoutingHeader in the 418
message that has just been received 419

iii)The To element contains the SenderURI from the last RoutingHeader in the message 420
that has just been received 421

iv)a RefToMessageId element that contains the MessageId of the message being 422
acknowledged 423

v)a QualityOfServiceInfo element with deliverySemantics set to OnceAndOnlyOnce 424

vi)an Acknowledgment element with type set to IntermediateAck 425

vii)a RoutingHeader element that contains the SenderURI of the sender (e.g. the URL 426
for Party C’s or Party B’s MSH) and the ReceiverURI of the next recipient of the 427
message (e.g. the URL of Party B’s or Party C’s MSH) 428

3)If a MSH that is the To Party receives a message and it requires an Intermediate 429
Acknowledgment (see step 2) then, unless the To Party is returning an Acknowledgment 430
Message that is a Delivery Receipt, return an Acknowledgment Message as described in step 431
2c above. 432

1.31.4 ebXML Reliable Messaging using Commercial Software 433
ProductsQueuing Transports 434

This section describes the differences that apply if commercial software products a Queuing 435
Transport is are used to implement Reliable Messaging. 436

Use of the ebXML Reliable Messaging Protocol is identified by the ReliableMessagingMethod 437
parameter being set to Transport Tra for transmission (either a Single-hop or a Multi-hop) 438

If Reliable Messaging using a commercial software product Queuing Transport is being used then 439
the following rules apply: 440

1)An Intermediate Ack SHOULD not be requested. If an Intermediate Ack is requested, then it is 441
ignored. 442

2)No message acknowledgments with an Acknowledgment element with a type of 443
IntermediateAck should be sent, even if requested 444

3)1)Implementations should use the facilities of the commercial software product Queuing 445
Transport to determine if the message was delivered 446

4)2)If the software product being used reports that a message cannot be delivered thenIf an 447
intermediate MSH cannot forward a message to the next Party then the the From Party 448
should be notified using the procedure described in section 1.510.5. 449

5)An acknowledgment message with an Acknowledgment element with a type attribute set to 450
deliveryReceipt can be sent if requested to inform the sender of the message being 451
acknowledged that the message was delivered. 452

1.4Service and Action Element Values 453

An Acknowledgment element can be included in an ebXMLHeader that is part of a message 454
that is being sent as a result of processing of an earlier message. In this case the values for the 455
Service and Action elements are set by the designer of the Service (see section 8.4.4). 456

An Acknowledgment element also can be included in an ebXMLHeader that does not include 457
any results from the processing of an earlier message. In this case, the values of the Service and 458
Action elements MUST be set as follows: 459
? The Service element MUST be set to: 460

http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment 461
? The Action element MUST be set to the value of the type attribute in the Acknowledgment 462

element. 463

Note that deliveryReceiptRequested must be set to None on a message that is only an 464
acknowledgment. 465

1.5 Failed Message Delivery 466

In the event that a MSH or other process that is involved, in some capacity in the delivery of a 467
message that is sent with deliverySemantics set to OnceAndOnlyOnce has determined that the 468
message cannot be delivered to the application or other process that has been designated to 469
process the message, then that MSH or process SHOULD send a delivery failure notification 470
message to the From Party that sent the message. The delivery failure notification message 471
contains: 472

It is possible, that a Message cannot be delivered to its ultimate destination. This can be either: 473
? when the To Party MSH cannot deliver the message to the Application or other process that 474

needs it, or 475
? when using Intermediate Acknowledgments and an Intermediate system determines that a 476

message may have been lost. This is illustrated by the diagram below. 477

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message X1 3

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X5

6

Message
being

Acknowledged

Acknowledgement
Message

Message T
(IntermediateAck)

4Message T
(IntermediateAck)

2 û
Msg. Lost

Message Y
(Delivery Receipt)

 478

Figure 10-7 Failed Message Delivery using Intermediate Acknowledgments 479

In this example, Party B does not know if Party C (or Party D) has received the message since, 480
even after resending, it has not received the acknowledgment message (Message T). 481

In both these circumstances the MSH that detects the problem MUST send a message to the 482
From Party that sent the message being acknowledged (via the Intermediate Party if required). 483
The message contains: 484
• a From Party that identifies the Party that detected the problem 485
• a To Party that identifies the From Party that created the message that could not be 486

delivered 487
• a Service element and Action element set as described in Error! Reference source not 488

found.11.5 489
• a QualityOfServiceInfo element with deliverySemantics set to the same value as the 490

deliverySemantics on the message that could not be delivered 491
• an Error element with a severity of: 492

- Error if the Party that detected the problem could not even transmit the message (e.g. 493
Transmission 3 was impossiblethe communications transport was not available) 494

- Warning if the message (e.g. Message X in Transmission 3) was transmitted, but no 495
acknowledgment message was received. This means that the message probably was not 496
delivered although there is a small probability that it was 497

• an ErrorCode of DeliveryFailure 498

This is illustrated by the diagram below by the text and arrows in red. 499

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message X
1 3

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X
5

6

Message
being

Acknowledged

Acknowledgement
Message

Message T
(IntermediateAck)

4Message T
(IntermediateAck) 2 û

Msg. Lost

Message Y
(Delivery Receipt)

Timeout !!
Delivery
Failed !!

Message U
(Error=DeliveryFailed)

Message V
(IntermediateAck)

7

8
 500

Figure 10-8 Reporting Failed Message Delivery 501

Note that the message that contains an Error element with an ErrorCode of DeliveryFailure 502
(e.g. Message U in Transmission 7) might be sent reliably. It is possible the acknowledgment 503
message for this message (e.g. Message V in Transmission 8) is not received. In this case, the 504
Party that detects the failed delivery (e.g. Party B) SHOULD inform the Party (e.g. Party A) that 505
sent the message being acknowledged (e.g. Message X in Transmission 1) of the failure. How 506
this is done is outside the scope of this specification. 507

1.6Reliable Messaging Parameters 508

This section describes the parameters required to control reliable messaging. This parameter 509
information may be contained: 510

? in the ebXML Message header, or 511

? in the CPA associated with the message. 512

If the information is in both the ebXML message header and the CPA, the information in the 513
header over-rides the CPA. 514

1.6.1Who sets Message Service Parameters 515

The values to be used in parameters can be specified by the following parties: 516
? the From Party 517
? the To Party 518
? the sending Message Service Handler (MSH) 519
? the receiving Message Service Handler 520

Parameters set by the From Party or the To Party, apply to the delivery of a message as a whole. 521
Parameters set by the sending or receiving MSH apply to a single-hop. 522

Note that the From Party is the sending MSH and the To Party is the receiving MSH for the 523
first/last MSH that handles the message. 524

The table below indicates where these parameters may be set. 525
 526

In this table, the following interpretation of the columns should be used: 527

7)the Specified By columns indicates the Party that sets the value in the Collaboration Party 528
Protocol, Message Header, or Routing Header 529

14)if the CPA/CPP column contains a Yes then it indicates that the party in the Specified By 530
column specifies the value that is present in the CPP 531

15)if the CPA/CPP column contains a No then it indicates that the parameter value is never 532
specified in the CPP 533

16)if the Message Header or Routing Header columns contain a Yes then it indicates that the 534
parameter value may be specified in the Header element or Routing Header and over-rides 535
any value in the CPA. It the value is not specified in the Header element or Routing Header 536
then the value in the CPA must be used. 537

17)if the Message Header/Routing Header columns contain a No then it indicates that the value 538
in the CPA is always used 539

18)if the Message Header/Routing Header columns contain a N/A then it indicates that the 540
value may be specified in another header 541

These parameters are described below. 542

1.6.2From Party Parameters 543

This section describes the parameters that are set by the From Party 544

1.6.2.1Delivery Semantics 545

The deliverySemantics parameter may be present as either an element within the 546
ebXMLHeader element or as a parameter within the CPA. See section 8.4.7.1 for more 547
information. 548

1.6.2.2Delivery Receipt Requested 549

The deliveryReceiptRequested parameter may be present as either an element within the 550
ebXMLHeader element or as a parameter within the CPA. See section 8.4.7.2 for more 551
information. 552

1.6.2.3Sync Reply Mode 553

The syncReplyMode parameter may be present as either an element within the ebXMLHeader 554
element or as a parameter within the CPA. See section 8.4.7.3 for more information. 555

1.6.2.4Time To Live 556

The TimeToLive element may be presented within the ebXMLHeader element see section 557
8.4.6.4 for more information. 558

1.6.3To Party Parameters 559

This section describes the parameters that are set by the To Party 560

1.6.3.1Delivery Receipt Provided 561

The DeliveryReceiptProvided parameter indicates whether a To Party can provide an 562
acknowledgment message with a type attribute of deliveryReceipt in response to a message. 563
Valid values are: 564
? Signed - indicates that only a signed Delivery Receipt can be provided 565
? Unsigned - indicates only an unsigned Delivery Receipt can be provided, 566
? Both - indicates that either a signed or an unsigned Delivery Receipt can be provided, or 567
? None - indicates that the To Party does not create Delivery Receipts 568

If a MSH receives a Message where deliveryReceiptRequested is in not compatible with the 569
value of DeliveryReceiptProvided then the MSH MUST return an Error Message to the From 570
Party MSH, reporting that the DeliveryReceiptProvided is not supported. This must contain an 571
errorCode set to NotSupported and a severity of Error. 572

1.6.4Sending MSH Parameters 573

This section describes the parameters that are set by the Party that operates the Sending MSH. 574

1.6.4.1Reliable Messaging Method 575

The ReliableMessagingMethod parameter indicates the requested method for Reliable 576
Messaging that will be used when sending a Message. Valid values are: 577

? ebXML in this case the ebXML Reliable Messaging Protocol as defined in section 10.2 is 578
followed, or 579

? Transport, in this case a Queuing Transport Protocol is used for reliable delivery of the 580
message, see section10.3. 581

1.6.4.2Intermediate Ack Requested 582

The IntermediateAckRequested parameter is used by the Sending MSH to request that the 583
Receiving MSH that receives the Message returns an acknowledgment message with an 584
Acknowledgment element with a type of IntemediateAcknowledgment.. 585

Valid values for IntermediateAckRequested are: 586

? Unsigned - requests that an unsigned Delivery Receipt is requested 587

? Signed - requests that a signed Delivery Receipt is requested, or 588

? None - indicates that no Delivery Receipt is requested. 589

The default value is None. 590

1.6.4.3Timeout Parameter 591

The timeout parameter is an integer value that specifies the time in seconds that the Sending 592
MSH MUST wait for an Acknowledgment Message before first resending a message to the 593
Receiving MSH. 594

1.6.4.4Retries Parameter 595

The retries Parameter is an integer value that specifies the maximum number of times the 596
message being acknowledged must be resent to the Receiving MSH using the same 597
Communications Protocol by the Sending MSH. 598

1.6.4.5RetryInterval Parameter 599

The retryInterval parameter is an integer value specifying, in seconds, the time the Sending 600
MSH MUST wait between retries, if an Acknowledgment Message is not received. 601

1.6.4.6Deciding when to resend a message 602

The Sending MSH MUST resend the original message if an Acknowledgment Message has not 603
been received from the Receiving MSH and either: 604
? the message has not yet been resent and at least the time specified in the timeout parameter 605

has passed since the first message was sent, or 606
? the message has been resent, and 607

-at least the time specified in the retryInterval has passed since the last time the message 608
was resent, and 609

-the message has been resent less than the number of times specified in the retries 610
Parameter, and 611

If the Sending MSH does not receive an Acknowledgment Message after the maximum number 612
of retries, the Sending MSH SHOULD notify either: 613

? the application and/or system administrator function if the Sending MSH is the From Party MSH, 614
or 615

? send an message reporting the delivery failure, if the Sending MSH is operating by an 616
Intermediate Party (see section 10.5) 617

1.6.5Receiving MSH Parameters 618

This section describes the parameters that are set by the Party that operates the Receiving MSH. 619

1.6.5.1Reliable Messaging Methods Supported 620

The reliableMessagingMethodsSupported parameter is a list of the methods that a MSH uses 621
to support Reliable Messaging. It must be a URI. The URI for the ebXML Reliable Messaging 622
Protocol described in section 10.2 is http://www.ebxml.org/namespaces/reliableMessaging 623

1.6.5.2PersistDuration 624

persistDuration is the minimum length of time, expressed as a [XMLSchema] timeDuration, that 625
data from a Message that is sent reliably, is kept in Persistent Storage by a MSH that receives 626
that Message. 627

In order to support the filtering of duplicate messages, a Receiving MSH MUST, as a minimum, 628
save the MessageId in persistent storage. It is also RECOMMENDED that the following be kept 629
in Persistent Storage: 630
? the complete message, at least until the information in the message has been passed to the 631

application or other process that needs to process it 632
? the time the message was received, so that the information can be used to generate the 633

response to a Message Status Request (see section 9.1.1) 634

persistDuration is specified in the CPA. 635

A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the 636
elapsed time indicated by persistDuration has passed since the message was first sent as the 637
receiving MSH will probably not treat it as a duplicate. 638

If a message cannot be sent successfully before persistDuration has passed, then the MSH 639
should report a delivery failure (see section 10.5). 640

Note that implementations may determine that a message is persisted for longer than the time 641
specified in persistDuration, for example in order to meet legal requirements or the needs of a 642
business process. This information is recorded separately within the CPA. 643

In order to ensure that persistence is continuous as the message is passed from the receiving 644
MSH to the process or application that is to handle it, it is RECOMMENDED that a message is 645
not removed from persistent storage until the MSH knows that the data in the message has been 646
received by the process/application. 647

1.6.5.3MSH Time Accuracy 648

2 The mshTimeAccuracy parameter in the CPA indicates 649

the minimum accuracy that a Receiving MSH keeps 650

the clocks it uses when checking, for example, 651

TimeToLive. It’s value is in the format “mm:ss” which 652

indicates the accuracy in minutes and 653

seconds.Parameters that need to be specified in the 654

CPA 655

<DB>The following (or something similar) is not part of the TRP spec but needs to be included in 656
the CPA spec.</DB> 657

2.1.1.1 Delivery Receipt Requested 658

The deliveryReceiptRequested parameter may be present as either an element within the 659
ebXMLHeader element or as a parameter within the CPA. See section Error! Reference source 660
not found. for more information. 661

2.1.1.2 Delivery Receipt Provided 662

The DeliveryReceiptProvided parameter indicates whether a To Party can provide an 663
acknowledgment message with a type attribute of deliveryReceipt in response to a message. 664
Valid values are: 665
• Signed - indicates that only a signed Delivery Receipt can be provided 666
• Unsigned - indicates only an unsigned Delivery Receipt can be provided, 667
• Both - indicates that either a signed or an unsigned Delivery Receipt can be provided, or 668
• None - indicates that the To Party does not create Delivery Receipts 669

If a MSH receives a Message where deliveryReceiptRequested is in not compatible with the 670
value of DeliveryReceiptProvided then the MSH MUST return an Error Message to the From 671
Party MSH, reporting that the DeliveryReceiptProvided is not supported. This must contain an 672
errorCode set to NotSupported and a severity of Error. 673

2.1.1.3 Reliable Messaging Methods Supported 674

The reliableMessagingMethodsSupported parameter is a list of the methods that a MSH uses 675
to support Reliable Messaging. It must be a URI. The URI for the ebXML Reliable Messaging 676
Protocol described in section 1) is http://www.ebxml.org/namespaces/reliableMessaging 677

2.1.1.4 PersistDuration 678

persistDuration is the minimum length of time, expressed as a [XMLSchema] timeDuration, that 679
data from a Message that is sent reliably, is kept in Persistent Storage by a MSH that receives 680
that Message. 681

In order to support the filtering of duplicate messages, a Receiving MSH MUST, as a minimum, 682
save the MessageId in persistent storage. It is also RECOMMENDED that the following be kept 683
in Persistent Storage: 684
• the complete message, at least until the information in the message has been passed to the 685

application or other process that needs to process it 686
• the time the message was received, so that the information can be used to generate the 687

response to a Message Status Request (see section Error! Reference source not found.) 688

persistDuration is specified in the CPA. 689

A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the 690
elapsed time indicated by persistDuration has passed since the message was first sent as the 691
receiving MSH will probably not treat it as a duplicate. 692

If a message cannot be sent successfully before persistDuration has passed, then the MSH 693
should report a delivery failure (see section 1.5). 694

Note that implementations may determine that a message is persisted for longer than the time 695
specified in persistDuration, for example in order to meet legal requirements or the needs of a 696
business process. This information is recorded separately within the CPA. 697

In order to ensure that persistence is continuous as the message is passed from the receiving 698
MSH to the process or application that is to handle it, it is RECOMMENDED that a message is 699
not removed from persistent storage until the MSH knows that the data in the message has been 700
received by the process/application. 701

2.1.1.5 MSH Time Accuracy 702

The mshTimeAccuracy parameter in the CPA indicates the minimum accuracy that a Receiving 703
MSH keeps the clocks it uses when checking, for example, TimeToLive. It’s value is in the format 704
“mm:ss” which indicates the accuracy in minutes and seconds. 705

3 Acknowledgement element 706

Changes required to the acknowledgement element 707

8.93.1 Acknowledgment Element 708

The Acknowledgment element is an optional element that is used by one Message Service 709
Handler to indicate that another Message Service Handler has received a message. 710

For clarity two terms are defined: 711
• message being acknowledged. This is the Message that is has been received by a MSH that 712

is now being acknowledged 713
• acknowledgment message. This is the message that acknowledges that the message being 714

acknowledged has been received. 715

The message being acknowledged is identified by the RefToMessageId contained in the 716
MessageData element contained within the Header Element of the acknowledgment message 717
containing the value of the MessageId of the message being acknowledged. 718

The Acknowledgment element consists of the following: 719
• a Timestamp element 720
• a From element 721
? a type attribute 722
• a signed attribute 723

8.9.13.1.1 Timestamp element 724

No change 725

8.9.23.1.2 From element 726

This is the same element as the From element within Header element (see section Error! 727
Reference source not found.8.4.1). However, when used in the context of an Acknowledgment 728
Element, it contains the identifier of the Party that is generating the acknowledgment message. 729

If the From element is omitted then the Party that is sending the element is identified by the From 730
element in the Header element. 731

8.9.33.1.3 type attribute 732

delete this section 733

8.9.43.1.4 signed attribute 734

No change 735

 736

4 Updated XML Schema 737

This specifies the only required change to the Schema ... 738
<!-- ACKNOWLEDGEMENT --> 739
 <xsd:element name="Acknowledgment"> 740
 <xsd:complexType> 741
 <xsd:sequence> 742
 <xsd:element ref="Timestamp"/> 743
 <xsd:element ref="From" minOccurs="0" maxOccurs="1"/> 744
 </xsd:sequence> 745
 <xsd:attribute name="id" type="xsd:ID"/> 746
 <xsd:attribute name="type" use="default" value="DeliveryReceipt"/> 747
 <xsd:simpleType> 748
 <xsd:restriction base="xsd:NMTOKEN"> 749
 <xsd:enumeration value="DeliveryReceipt"/> 750
 <xsd:enumeration value="IntermediateAck"/> 751
 </xsd:restriction> 752
 </xsd:simpleType> 753
 <xsd:attribute name="signed" type="xsd:boolean"/> 754
 </xsd:complexType> 755
 </xsd:element> 756

... to ... 757
<!-- ACKNOWLEDGEMENT --> 758
 <xsd:element name="Acknowledgment"> 759
 <xsd:complexType> 760
 <xsd:sequence> 761
 <xsd:element ref="Timestamp"/> 762
 <xsd:element ref="From" minOccurs="0" maxOccurs="1"/> 763
 </xsd:sequence> 764
 <xsd:attribute name="id" type="xsd:ID"/> 765
 <xsd:attribute name="signed" type="xsd:boolean"/> 766
 </xsd:complexType> 767
 </xsd:element> 768

5 Non-normative examples of multi-hop 769

This section is not to be included in the spec but shows a number of alternative message flows 770
that illustrate how the black box approach and multi-hop could work. 771

Black Box
Party A

MSH
Message X

Application

Party B

MSH

Routing
Application

MSH
Message Y

1

4

Party C

MSH

Application

Message X

Message Y

2

3

 772

 773

Black Box
Party A

MSH

Application

Party B

MSH

Routing
Application

MSH

Party C

MSH

Application

Message X

Acknowledgement
Message

1

2

Message X

Acknowledgement
Message

3

4

 774

 775

Black Box
Party A

MSH

Application

Party B

MSH

Routing
Application

MSH

Party C

MSH

Application

Message X

Message Y

1

7

Message X

Acknowledgement
Message

3

4

Message Y

Acknowledgement
Message

5

6

 776

 777

Black Box
Party A

MSH

Application

Party B

MSH

Routing
Application

MSH

Party C

MSH

Application

Message X

Message Y

3

4

Message X

Acknowledgement
Message

1

2

Message Y

Acknowledgement
Message

5

6

 778

