
1 Reliable Messaging 1

Reliable Messaging defines an interoperable protocol such that any two Messaging Service 2
Handlers (MSH) can “reliably” exchange messages that are sent using “reliable messaging” 3
delivery semantics. 4

“Reliably” means that the From Party can be highly certain that the message sent will be 5
delivered to the To Party. If there is a problem in sending a message then the sender resends the 6
message until either the message is delivered, or the sender gives up. If the message cannot be 7
delivered, for example because there has been a catastrophic failure of the To Party’s system, 8
then the From Party is informed. 9

1.1 Persistent Storage and System Failure 10

A MSH that supports Reliable Messaging MUST keep messages, and/or selected data from 11
these messages, in persistent storage. In this context persistent storage is a method of storing 12
data that does not lose information after a system failure or interruption. 13

This specification recognizes that different degrees of resilience may be realized depending on 14
the technology that is used to persist the data. However, as a minimum, persistent storage that 15
has the resilience characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly 16
RECOMMENDED though that implementers of this specification use technology that is resilient to 17
the failure of any single hardware or software component. 18

Even after a system interruption or failure, a MSH MUST ensure that messages in persistent 19
storage are processed as if the system failure or interruption had not occurred. How this is done 20
is an implementation decision. 21

In order to support the filtering of duplicate messages, a Receiving MSH SHOULD, save the 22
MessageId in persistent storage. It is also RECOMMENDED that the following be kept in 23
Persistent Storage: 24

• the complete message, at least until the information in the message has been passed to 25
the application or other process that needs to process it 26

• the time the message was received, so that the information can be used to generate the 27
response to a Message Status Request (see section Error! Reference source not 28
found.) 29

1.2 Reliable Messaging Parameters 30

This section describes the parameters required to control reliable messaging. This parameter 31
information is contained in the following: 32

• the ebXML Message Header, or 33

• the CPA that governs the processing of a message. 34

 35

The table below indicates where these parameters may be set. 36
 37

Parameter CPA Header

deliverySemantics Yes Yes

syncReplyMode Yes Yes

timeToLive Yes Yes

reliableMessagingMethod No Yes

Parameter CPA Header

intermediateAckRequested<DB>
Should be just "ackRequested"
</DB>

No Yes

timeout Yes No

retries Yes No

retryInterval Yes No

reliableMessagingSupported Yes No

persistDuration Yes No

 38

In this table, the following interpretation of the columns should be used: 39

1) if the CPA column contains a Yes then it indicates that the value that is present in the CPA 40
determines the processing semantics 41

2) if the CPA column contains a No then it indicates that the parameter value is never specified 42
in the CPA 43

3) if the Header column contains a Yes then it indicates that the parameter value MAY be 44
specified in the ebXML Header document. 45

 46

<DB> It is not clear what happens if a parameter is in both the CPA and the Header (parameters 47
deliverySemantics, syncReplyMode, timeToLive). The above seems to suggest that if the value is 48
in the header then it would be ignored.</DB> 49

These parameters are described below. 50

1.2.1 Delivery Semantics 51

The deliverySemantics parameter may be present as either <DB>in the CPA or as ??</DB>an 52
attribute within the QualityOfService element of the ebXMLHeader document. The 53
deliverySemantics attribute takes its value <DB>Does this mean that it has exactly the same 54
value as the parameter in the CPA and it is copied into the header as a convenience to the MSH 55
instead of the MSH having to look up value in the CPA. What happens, though, if the value in the 56
CPA happens to be different from the value in the CPA. </DB>from the CPA that governs the 57
processing of a given message. See section Error! Reference source not found. for more 58
information. 59

1.2.2 Sync Reply Mode 60

The syncReplyMode parameter may be present as either an element within the ebXMLHeader 61
element or as a parameter within the CPA. See section Error! Reference source not found. for 62
more information. 63

1.2.3 Time To Live 64

The TimeToLive element may be presente within the ebXMLHeader document see section 65
Error! Reference source not found. for more information. 66

1.2.4 Reliable Messaging Method 67

The ReliableMessagingMethod parameter indicates the requested method for Reliable 68
Messaging that will be used when sending a Message. Valid values are: 69

• ebXML in this case the ebXML Reliable Messaging Protocol as defined in section 1.3.1 is 70
followed, or 71

• Transport, in this case a reliable transport protocol is used for reliable delivery of the 72
message, see section 0<DB>This section has been removed therefore this is 73
inconsistent.</DB>. 74

1.2.5 Intermediate Ack Requested 75

The IntermediateAckRequested parameter is used by the Sending MSH to request that the 76
Receiving MSH that receives the Message returns an acknowledgment message with an 77
Acknowledgment element with a type of IntemediateAcknowledgment.. 78

<DB>Do we define anywhere what is an acknowledgement message or do we rely on the 79
Glossary?</DB> 80

Valid values for IntermediateAckRequested are: 81

• Unsigned - requests that an unsigned Delivery Receipt is requested 82

• Signed - requests that a signed Delivery Receipt is requested, or 83

• None - indicates that no Delivery Receipt is requested. 84

<DB>Replace Delivery Receipt by Intermediate Acknowledgement in the above. This imistake is 85
also in the current version of the spec.</DB> 86

The default value is None. 87

1.2.6 Timeout Parameter 88

The timeout parameter is an integer value that specifies the time in < seconds DB>Perhaps this 89
should be an XML Schema TimeDuration. </DB>that the Sending MSH MUST wait for an 90
Acknowledgment Message before first resending a message to the Receiving MSH. 91

1.2.7 Retries Parameter 92

The retries Parameter is an integer value that specifies the maximum number of times a Sending 93
MSH SHOULD attempt to redeliver an unacknowledged or undelivered message.<DB>This 94
should say per Communication Protocol.</DB> 95

1.2.8 RetryInterval Parameter 96

The retryInterval parameter is an integer value specifying, in seconds, DB>Perhaps this should 97
be an XML Schema TimeDuration </DB>the time the Sending MSH SHOULD wait between 98
retries, if an Acknowledgment Message is not received.<DB>The current version says MUST 99
rather than SHOULD. A simple SHOULD suggests that it is OK to resend it earlier. Suggest 100
saying that the time is minimum that the MSH MUST wait.</DB> 101

1.2.9 Reliable Messaging Methods Supported 102

The reliableMessagingMethodsSupported parameter is a list of the methods that a MSH uses 103
to support Reliable Messaging. It must be a URI. The URI for the ebXML Reliable Messaging 104
Protocol described in section 1.3.1 is http://www.ebxml.org/namespaces/reliableMessaging 105
<DB>This is only every used in the CPA. Therefore it really does not need to be here.</DB> 106

1.2.10 PersistDuration 107

The persistDuration parameter is specified in the CPA. <DB>We don't need to say this as it is 108
stated in the table.</DB> It represents the minimum length of time, expressed as a [XMLSchema] 109
timeDuration, that data from a Message that is sent reliably, is kept in Persistent Storage by a 110
MSH that receives that Message. Note that implementations may determine that a message is 111
persisted for longer than the time specified in persistDuration, for example in order to meet legal 112
requirements or the needs of a business process. This information is recorded separately within 113
the CPA. 114

<DB>There seems to have been a lot of text cut out from the description of PersistDuration. 115
There was a discussion on the list about how PersistDuration should described in the spec which 116

led to an agreed definition. We should reconsider including that text. Speciifically we should re-117
insert the followin ... 118

"A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the 119
elapsed time indicated by persistDuration has passed since the message was first sent as the 120
receiving MSH will probably not treat it as a duplicate" 121

</DB> 122

1.3 Methods of Implementing Reliable Messaging 123

Support for Reliable Messaging can be implemented in one of the following two ways: 124
• using the ebXML Reliable Messaging protocol, or 125
• using ebXML Header and Message structures together with commercial software 126

products that are designed to provide reliable delivery of messages using alternative 127
protocols 128

 129

Use of alternative protocols to effect reliable delivery of messages is outside the scope of this 130
specification. 131

<DB>If we provide absolutely no guidance on how to use alternative protocols then we run the 132
risk of failing to get interoperability. For example, can we assume that the meaning of all the 133
parameters (e.g. IntermediateAckRequested) is exactly the same whether we are using the 134
ebXML reliable messaging protocol or not. Right?.</DB> 135

1.3.1 ebXML Reliable Messaging Protocol 136

The ebXML Reliable Messaging Protocol described in this section MUST be followed if the 137
deliverySemantics parameter/element is set to OnceAndOnlyOnce and the 138
ReliableMessagingMethod parameter/element is set to ebXML (the default). 139

The ebXML Reliable Messaging Protocol is illustrated by the figure below. 140

To Party

MSH

Application

From Party

MSH
1. Message

2. Ack
Message

Application Message

Acknowledgement
Message

 141

Figure 1-1 Indicating that a message has been received 142

The receipt of the acknowledgment message indicates that a message has been successfully 143
received, and either processed or persisted by the receiving MSH to which the message was 144
sent. 145

An acknowledgment message MUST contain a MessageData element with a RefToMessageId 146
that contains the same value as the MessageId element in the message being acknowledged. 147

 148

 149

1.3.1.1 Sending Message Behavior 150

If a MSH is given data by an application that needs to be sent reliably then the MSH MUST do the 151
following: 152

1) Create a message from components received from the application that includes: 153

a) deliverySemantics set to OnceAndOnlyOnce, and 154

b) a RoutingHeader element that identifies the sender and the receiver URIs 155

2) Save the message in persistent storage (see section 1.1) 156

3) Send the message to the Receiver MSH 157

4) Wait for the Receiver MSH to return an acknowledgment message and, if it does not, then 158
resend the identical message as described in section 1.3.1.4 159

 160

1.3.1.2 Receiving Message Behavior 161

If deliverySemantics on the received message is set to OnceAndOnlyOnce then do the 162
following: 163

1) Check to see if the message is a duplicate (e.g. there is a message in persistent storage that 164
was received earlier that contains the same value for the MessageId) 165

2) If the message is not a duplicate then do the following: 166

a) Save the MessageId of the received message in persistent storage. As an 167
implementation decision, the whole message MAY be stored if there are other reasons 168
for doing so 169

b) If the received message contains a RefToMessageId element then do the following: 170

i) Look for a message in persistent storage that has a MessageId that is the same as 171
the value of RefToMessageId on the received Message 172

ii) If a message is found in persistent storage then mark the persisted message as 173
delivered 174

c) <DB>What is entirely missing from here (and I can't find it anywhere else) is the 175
requirement to send an acknowledgement message if the message isn't a duplicate !!! 176
See updated text on Service and Action Element Values </DB> 177

3) If the message is a duplicate, then do the following: 178

a) Look in persistent storage for a response to the received message (i.e. it contains a 179
RefToMessageId that matches the MessageId of the received message) 180

b) If no message was found in persistent storage then ignore the received message as 181
either no message was generated in response to the message, or the processing of the 182
earlier message is not yet complete 183

c) If a message was found in persistent storage then resend the persisted message back to 184
the MSH that sent the received message. 185

<DB>This assumes there is only one message that has been generated and persisted as a result 186
of receiving an earlier message. There could be more. For example you could send an 187
acknowledgement message followed later by a message that contained a business response. So 188
you have to say either: 189

• the first message sent in reply, 190

• the most recent message, or 191
• leave it undefined. 192

I prefer the most recent as it will be more useful to get the business/process response than the 193
acknowledgement.</DB> 194

1.3.1.3 Service and Action Element Values 195

<DB>Suggest renaming this to Generating an Acknowkledgement Message and including 196
description of how to generate an acknowledgement with precise rules on what it contains.</DB> 197

An Acknowledgment element can be included in an ebXMLHeader that is part of a message 198
that is being sent as a result of processing of an earlier message. In this case the values for the 199
Service and Action elements are set by the designer of the Service (see section Error! 200
Reference source not found.). 201

<DB>Later parts of this spec indicate that an Acknowledgement element can only be used with 202
multi-hop. This is inconsistent. It is much simpler if the rule is if the Routing Header contains an 203
ackRequested set to True then return an Acknowledgement element. This apparent restriction 204
also complicates the use of syncReplyMode.</DB> 205

An Acknowledgment element also can be included in an ebXMLHeader that does not include 206
any results from the processing of an earlier message. In this case, the values of the Service and 207
Action elements MUST be set as follows: 208

• The Service element MUST be set to: 209
http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment 210

• The Action element MUST be set to the value of the type attribute in the 211
Acknowledgment element.<DB>This is now inconsistent as we no longer have delivery 212
receipts as a valid type of acknowledgement.</DB> 213

 214

1.3.1.4 Resending Lost Messages and Duplicate Filtering 215

This section describes the behavior that is required by the sender and receiver of a message in 216
order to handle when messages are lost. A message is "lost" when a sending MSH does not 217
receive a response to a message. For example, it is possible that a messagewas lost, for 218
example: 219

û
Msg. Lost

Party B

MSH

Application

Party A

MSH
Message X

Application
Message

being
Acknowledged

1

 220

Figure 1-2 Lost Message 221

It is also possible that the Acknowledgment Message was lost, for example: 222

û
Msg. Lost

Party B

MSH

Application

Party A

MSH
Message X

Application

Message Y

1

2

Acknowledgement
Message

 223

Figure 1-3 Lost Acknowledgment Message 224

The rules that apply are as follows: 225

1) The Sending MSH MUST resend the original message if an Acknowledgment Message has 226
not been received from the Receiving MSH and either of the following are true: 227

a) The message has not yet been resent and at least the time specified in the timeout 228
parameter has passed since the first message was sent, or 229

b) The message has been resent, and the following are both true: 230

i) At least the time specified in the retryInterval has passed since the last time the 231
message was resent, and 232

ii) The message has been resent less than the number of times specified in the retries 233
Parameter 234

2) If the Sending MSH does not receive an Acknowledgment Message after the maximum 235
number of retries, the Sending MSH SHOULD notify the application and/or system 236
administrator function. 237

3) If the Sending MSH detects a communications protocol error that is unrecoverable at the 238
transport protocol level then the Sending MSH SHOULD first attempt to resend the message 239
using the same transport protocol until the number of retries has been reached, and then 240
again, using a different communications protocol<DB>We should allow multiple different 241
communication protocols and not just one. This is also in the current version of the 242
spec</DB>, if the CPA allows this. If these are not successful, then notify the From Party of 243
the failure to deliver as described in section 1.4. 244

1.3.2 Duplicate Message Handling 245

 246

In this context: 247
• an identical message is a message that contains the exact same ebXML Header and 248

ebXML Payload as the earlier message that was sent previously. 249
• a duplicate message is a message that contains the same MessageId as an earlier 250

message that was received. 251
• <DB>In the last version of the spec there was a noted disagreement between Chris and 252

myself around sending the most recent message. This has not been discussed and 253
needs to be.</DB> 254

Note that the Communication Protocol Envelope MAY be different. This means that the same 255
message MAY be sent using different communication protocols and the reliable messaging 256
behavior described in this section will still apply. The ability to use alternative communication 257
protocols is specified in the CPA and is an OPTIONAL implementation specific feature. 258

 259

 260

Party BParty A

MSH MSHMessage X

Message Yû
Msg. Lost

Message X

Message X

Message Y

û
Msg. Lost

Timeout !!

Timeout !!

Ignore
Duplicate

Application Application
1

2

3

4

5

 261

Figure 1-4 Resending Unacknowledged Messages 262

The diagram above shows the behavior that MUST be followed by the sending and receiving 263
MSH for messages that require reliable delivery as regards to duplicate message receipt<DB>I 264
think the phrase " that require reliable delivery as regards to duplicate message receipt" is vague. 265
Suggest change to "that are sent with deliverySemantics of OnceAndOnlyOnce. </DB>. 266
Specifically: 267

1) The sender of the message (e.g. Party A) MUST re-send the identical message if no 268
Acknowledgment Message is received 269

2) The recipient of the message (e.g. Party B), when it receives a duplicate message, MUST re-270
send to the sender of the message (e.g. Party A), a message identical to the message that 271
was originally sent in response to the duplicate message 272

3) The recipient of a duplicate message MUST NOT forward them a second time to the 273
application or other process that would normally be expected to process received messages. 274

 275

1.3.2.1 Multi-hop Reliable Messaging 276

Multi-hop Reliable Messaging with Intermediate Acknowledgments is similar to Multi-hop Reliable 277
Messaging without Intermediate Acknowledgment except that any of the Parties that are 278
transmitting a Message can request that the recipient return an Intermediate Acknowledgment. 279

<DB>The above paragraph doesn't make sense now as: 280

1) Multi-hop messaging without intermediate acks has been removed 281

2) Delivery Receipt has been removed so that intermediate acks is now only acks.</DB> 282

This is illustrated by the diagram below. 283

Party A

MSH

Message X

Application

Party B

MSH

Routing
Application

MSH

Message Y

Message X

Message Y
(Delivery Receipt)

1 2

6

8

Party D

MSH

Application

Party C

MSH

Routing
Application

MSH

Message X

Message Y
(Delivery Receipt)

4

5

Message

Acknowledgement
Message

Message T
(IntermediateAck)

Message U
(Intermediate Ack)

3

7
 284

Figure 1-6 Multi-hop Reliable Messaging 285

<CBF>The image above needs to be fixed so that delivery receipt is not included. 286
Intermediate acks only</CBF> 287

The rules that apply to Multi-hop Reliable Messaging are as follows: 288
• Any Party that is sending a message can request that the recipient send an 289

Acknowledgment Message by setting the AckRequested of the RoutingHeader for the 290
hop to Signed or Unsigned. 291

• a MSH that is not the To Party receives a message that requires an Intermediate 292
Acknowledgment then: the MSH MUST return an Acknowledgment Message with: 293

i) The Service and Action elements set as in defined in section 1.1 294

ii) The From element contains the ReceiverURI from the last RoutingHeader in the 295
message that has just been received 296

iii) The To element contains the SenderURI from the last RoutingHeader in the 297
message that has just been received 298

iv) a RefToMessageId element that contains the MessageId of the message being 299
acknowledged 300

v) a QualityOfServiceInfo element with deliverySemantics set to BestEffort 301

<DB>This is now vague as the sender of a message may not know in advance whether they are 302
sending a message to an intermediary</DB> 303

1.4 Failed Message Delivery 304

In the event that some actor<DB>Actor is not used as a term anywhere else in the spec. Do we 305
really want to introduce it? </DB> is involved, in some capacity, in the delivery of a message has 306
determined that a message cannot be delivered to the application or other process that has been 307
designated to process the message, that actor SHOULD send a delivery failure notification 308
message to the From Party that sent the message. The delivery failure notification message 309
contains: 310

• a From Party that identifies the Party that detected the problem 311
• a To Party that identifies the From Party that created the message that could not be 312

delivered 313
• a Service element and Action element set as described in Error! Reference source not 314

found. 315
• a QualityOfServiceInfo element with deliverySemantics set to the same value as the 316

deliverySemantics on the message that could not be delivered 317
• an Error element with a severity of: 318

- Error if the Party that detected the problem could not even transmit the message 319
(e.g. Transmission 3 was impossible)<DB>There is now no diagram, so we need to 320
change this.</DB> 321

- Warning if the message (e.g. Message X in Transmission 3) was transmitted, but no 322
acknowledgment was received. This means that the message probably was not delivered 323
although there is a small probability that it was 324

• an ErrorCode of DeliveryFailure 325

 326

 327
328

 329

