1 Reliable Messaging

Reliable Messaging defines an interoperable protocol such that the two Messaging Service Handlers (MSH) can “reliably” exchange messages that are sent using “reliable messaging” semantics.

Reliability is achieved by a sending MSH receiving an Acknowledgement Message.
1.1.1 Persistent Storage and System Failure

A MSH that supports Reliable Messaging MUST keep messages that are sent or received reliably in persistent storage. In this context, persistent storage is a method of storing data that does not lose information after a system failure or interruption.

This specification recognizes that different degrees of resilience may be realized depending on the technology that is used to persist the data. However, as a minimum, persistent storage that has the resilience characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly RECOMMENDED though that implementers of this specification use technology that is resilient to the failure of any single hardware or software component.

Even after a system interruption or failure, a MSH MUST ensure that messages in persistent storage are processed in the same way as if the system failure or interruption had not occurred. How this is done is an implementation decision.
In order to support the filtering of duplicate messages, a Receiving MSH SHOULD save the MessageId in persistent storage. It is also RECOMMENDED that the following be kept in Persistent Storage:

· the complete message, at least until the information in the message has been passed to the application or other process that needs to process it

· the time the message was received, so that the information can be used to generate the response to a Message Status Request (see section Error! Reference source not found.)
1.1.2

·
·
1.2 Reliable Messaging Parameters

This section describes the parameters required to control reliable messaging. This parameter information is contained in the CPA that governs the processing of a message.
Tidy up references to params in CPA or header.
1.2.1 Delivery Semantics

The deliverySemantics parameter may be present as either an element within the ebXMLHeader element or as a parameter within the CPA. See section Error! Reference source not found. for more information.
1.2.2 Sync Reply Mode

The syncReplyMode parameter may be present as either an element within the ebXMLHeader element or as a parameter within the CPA. See section Error! Reference source not found. for more information.

1.2.3 Time To Live

The TimeToLive element may be present within the ebXMLHeader element see section Error! Reference source not found. for more information.

1.2.4 Reliable Messaging Method

The ReliableMessagingMethod parameter indicates the requested method for Reliable Messaging that will be used when sending a Message. Valid values are:

· ebXML in this case the ebXML Reliable Messaging Protocol as defined in section 1) is followed, or

· Transport, in this case a commercial software product is used for reliable delivery of the message, using a binding that describes how that product should be used with ebXML.

1.2.5 Ack Requested

The AckRequested parameter is used by the Sending MSH to request that the Receiving MSH that receives the Message returns an acknowledgment message with an Acknowledgment element with a type of Acknowledgment..

Valid values for IntermediateAckRequested are:

· Unsigned - requests that an unsigned Acknowledgement is requested
· Signed - requests that a signed Acknowledgement is requested, or
· None - indicates that no Acknowledgement is requested.
The default value is None.

1.2.6 Timeout Parameter

The timeout parameter is an integer value that specifies the minimum time in seconds <DB>Perhaps this should be an XML Schema TimeDuration?. </DB> that the Sending MSH MUST wait for an Acknowledgment Message before first resending a message to the Receiving MSH.
1.2.7 Retries Parameter

The retries Parameter is an integer value that specifies the maximum number of times a Sending MSH SHOULD attempt to redeliver an unacknowledged or undelivered message using the same Communications Protocol.

1.2.8 RetryInterval Parameter

The retryInterval parameter is an integer value specifying, in seconds, <DB>Perhaps this should be an XML Schema TimeDuration?. </DB> the minimum time the Sending MSH MUST wait between retries, if an Acknowledgment Message is not received.

1.2.9 PersistDuration

The persistDuration parameter is the minimum length of time, expressed as a [XMLSchema] timeDuration, that data from a Message that is sent reliably, is kept in Persistent Storage by a MSH that receives that Message.
A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the elapsed time indicated by persistDuration has passed since the message was first sent as the receiving MSH will probably not treat it as a duplicate.

If a message cannot be sent successfully before persistDuration has passed, then the MSH should report a delivery failure (see section 1.5).

1.3 ebXML Reliable Messaging Protocol

The ebXML Reliable Messaging Protocol described in this section MUST be followed if the deliverySemantics parameter/element is set to OnceAndOnlyOnce and the ReliableMessagingMethod parameter/element is set to ebXML (the default).

The ebXML Reliable Messaging Protocol is illustrated by the figure below.

[image: image1.wmf]To Party

MSH

Application

From Party

MSH

1. Message

2.

Ack

Message

Application

Message

Acknowledgement

Message

Figure 1‑1 Indicating that a message has been received

·
·
The receipt of the acknowledgment message indicates that the message being acknowledged has been successfully received and either processed or persisted by the receiving MSH to which the message was sent.

An acknowledgment message MUST contain a MessageData element with a RefToMessageId that contains the same value as the MessageId element in the message being acknowledged.

·
·

1.3.1

1.3.2 Sending Message Behavior

If a MSH is given data by an application that needs to be sent reliably i.e. the deliverySemantics parameter in the CPA is set to OnceAndOnlyOnce, then the MSH MUST do the following:

1) Create a message from components received from the application that includes
2)
3) a RoutingHeader element that identifies the sender and the receiver URIs

4) Save the message in persistent storage (see section 1.1.1)

5) Send the message to the Receiver MSH

6) Wait for the Receiver MSH to return an acknowledgment message and, if it does not, then take the appropriate action as described in section 1.3.2.2

1.3.3 Receiving Message Behavior

If the CPA indicates that the deliverySemantics for the received message is set to OnceAndOnlyOnce then do the following:

7) Check to see if the message is a duplicate (e.g. there is a message id held in persistent storage that was received earlier that contains the same value for the MessageId)

8) If the message is not a duplicate and it is not just an acknowledgement then do the following:

a) Save the MessageId of the received message in persistent storage. As an implementation decision, the whole message MAY be stored if there are other reasons for doing so
b) If the received message contains a RefToMessageId element then do the following:

i) Look for a message in persistent storage that has a MessageId that is the same as the value of RefToMessageId on the received Message

ii) If a message is found in persistent storage then mark the persisted message as delivered

c) Generate an Acknowledgement Message in response (see section 1.3.2.1).

d)
e)
i)
ii)
iii)
iv)
v)
f)
9) If the message is a duplicate, then do the following:

a) Look in persistent storage for a response to the received message (i.e. it contains a RefToMessageId that matches the MessageId of the received message) that was most recently sent to the MSH that sent the received message (i.e. it has a RoutingHeader element with the greatest value of the Timestamp.) Change to resend first message.
b) If no message was found in persistent storage then if syncReplyMode is set to True and indicates that the response should include a business response then ignore the received message as either no message was generated in response to the message, or the processing of the earlier message is not yet complete, otherwise generate an acknowledgement REWORD
c) If a message was found in persistent storage then resend the persisted message back to the MSH that sent the received message.

1.3.3.1 Generating an Acknowledgement Message

An Acknowledgement Message MUST be generated whenever a message is received with:

· deliverySemantics set to OnceAndOnlyOnce and

· reliableMessagingMethod set to ebXML (the default).

As a minimum, it MUST contain a MessageData element with a RefToMessageId that contains the same value as the MessageId element in the message being acknowledged.

If ackRequested in the RoutingHeader of the received message is set to Signed or Unsigned then the acknowledgement message MUST also contain an Acknowledgement element.

Depending on the value of the syncReplyMode parameter, the Acknowledgement Message can also be sent at the same time as the response to the processing of the received message. In this case, the values for the Header elements of the Acknowledgement Message are set by the designer of the Service (see section Error! Reference source not found.).

If an Acknowledgment element is being sent on its own, then the value of the Header elements MUST be set as follows:

10) The Service element MUST be set to: http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment
11) The Action element MUST be set to Acknowledgment.
12) The From element MUST be set to the ReceiverURI from the last RoutingHeader in the message that has just been received

13) The To element MUST be set to the SenderURI from the last RoutingHeader in the message that has just been received

14) The RefToMessageId element MUST be set to the MessageId of the message that has just been received
1.3.3.2 Resending Lost Messages and Duplicate Filtering

This section describes the behavior that is required by the sender and receiver of a message in order to handle when messages are lost. A message is "lost" when a sending MSH does not receive a response to a message. For example, it is possible that a message was lost, for example:

[image: image3.wmf]û

Msg. Lost

Party B

MSH

Application

Party A

MSH

Message X

Application

Message

being

Acknowledged

1

Figure 1‑2 Lost “Message Being Acknowledged”

It is also possible that the Acknowledgment Message was lost, for example ...

[image: image4.wmf]û

Msg. Lost

Party B

MSH

Application

Party A

MSH

Message X

Application

Message Y

1

2

Acknowledgement

Message

Figure 1‑3 Lost Acknowledgment Message

The rules that apply are as follows:

15) The Sending MSH MUST resend the original message if an Acknowledgment Message has not been received from the Receiving MSH and either of the following are true:

a) The message has not yet been resent and at least the time specified in the timeout parameter has passed since the first message was sent, or

b) The message has been resent, and the following are both true:

i) At least the time specified in the retryInterval has passed since the last time the message was resent, and
ii) The message has been resent less than the number of times specified in the retries Parameter
16) If the Sending MSH does not receive an Acknowledgment Message after the maximum number of retries, the Sending MSH SHOULD notify the application and/or system administrator function.

17) If the Sending MSH detects a communications protocol error that is unrecoverable at the transport protocol level then the Sending MSH SHOULD resend the message using the rules as defined in the CPA.
1.3.3.3 Duplicate Message Handling

In this context:

· an identical message is a message that contains, apart from perhaps an additional RoutingHeader element, the same ebXML Header and ebXML Payload as the earlier message that was sent.

· a duplicate message is a message that contains the same MessageId as an earlier message that was received.

· the most recent message is the message with the latest Timestamp in the MessageData element that has the same RefToMessageId as the duplicate message that has just been received.<DB>This should be the first message. </DB>
Note that the Communication Protocol Envelope MAY be different. This means that the same message MAY be sent using different communication protocols and the reliable messaging behavior described in this section will still apply. The ability to use alternative communication protocols is specified in the CPA and is an OPTIONAL implementation specific feature.

[image: image5.wmf]Party B

Party A

MSH

MSH

Message X

Message Y

û

Msg. Lost

Message X

Message X

Message Y

û

Msg. Lost

Timeout !!

Timeout !!

Ignore

Duplicate

Application

Application

1

2

3

4

5

Figure 1‑4 Resending Unacknowledged Messages

The diagram above shows the behavior that MUST be followed by the sending and receiving MSH that are sent with deliverySemantics of OnceAndOnlyOnce. Specifically:

18) The sender of the message (e.g. Party A) MUST re-send the identical message if no Acknowledgment Message is received

19) The recipient of the message being acknowledged (e.g. Party B), when it receives a duplicate message, MUST re-send to the sender of the message (e.g. Party A), a message identical to the most recent message that was sent to the recipient (i.e. Party A)

20) The recipient of the message (e.g. Party B) MUST NOT forward them a second time to the application, or other process that ultimately needs to process received messages.

·
·
·

1.3.4 Multi-hop Reliable Messaging

Need some description in here about how to do reliable multi-hop messaging. Need to provide more examples – talk to Pam.
<DB>I've just concluded that we can probably do away with the complete Munlti-hop reliable messaging section if we consider the intermediary receiving MSH as acting as a proxy for the To Party MSH. This works since:

· The Acknowledgement message contains a From element that identifies the organization that generated the Acknowledgement element if it is not the To Party.
· The Routing Header can provide an audit trail (or not) if you allow multiple entries. After all, if some of the hops are not ebXML, then you cannot generate an audit trail for them
The big advantage is that it makes the behavior of the From Party the same whether or not multi-hop is being used. The text below illustrates how this could work.</DB>
Multi-hop reliable Messaging involves the sending of a message reliably from the From Party to the To Party via an intermediary that acts as a "black box". This means that the sender of a message does not need to know the address or protocols used to deliver the message to the final destination.
Multi-hop Reliable Messaging can occur either with or
without Intermediate Acknowledgments
.
An Intermediary knows that Multi-hop Reliable Messaging with Intermediate Acknowledgments applies if the received message contains ackRequested set to Signed or UnSigned.

1.3.4.1 Multi-hop Reliable Messaging without Intermediate Acknowledgments

This is illustrated by the diagram below.

[image: image7.wmf]Black Box

Party A

MSH

Message X

Application

Party B

MSH

Routing

Application

MSH

Message Y

1

4

Party C

MSH

Application

Message X

Message Y

2

3

Figure 1‑5 Multi-hop Reliable Messaging without Intermediate Acknowledgments
In this case, the intermediary (Party B) is acting as a proxy for the To Party (Party C).
1.3.4.2 Multi-hop Reliable Messaging with Intermediate Acknowledgments

This is illustrated by the diagram below.

[image: image8.wmf]Black Box

Party A

MSH

Application

Party B

MSH

Routing

Application

MSH

Party C

MSH

Application

Message X

Acknowledgement

Message

1

2

Message X

Acknowledgement

Message

3

4

Figure 1‑6 Multi-hop Reliable Messaging with Intermediate Acknowledgments

In this case, the Intermediary (Party B) accepts responsibility for delivering the message to its final destination by sending an Acknowledgement Message back to the sender of the original message. As far as sending and receiving of messages, the Intermediary behaves the same as a To Party with respect to the sending and receiving of messages.
If the Intermediary cannot, for some reason, deliver the message successfully to To Party (Party C), then it sends a Deli very Failure message to the From Party (Party A) – see section 1.5.

·
·

1.3.4.3

·
·

21)
a)
b)
22)
c)
d)
23)

24)
25)
26)
1.3.4.4

·
·

1)
2)
a)
i)
ii)
iii)
iv)
v)
vi)
vii)
3)
1.4

1)
2)
3)

1.5

·
·

1.6 Failed Message Delivery

In the event that a MSH or other process that is involved, in some capacity in the delivery of a message that is sent with deliverySemantics set to OnceAndOnlyOnce has determined that the message cannot be delivered to the application or other process that has been designated to process the message, then that MSH or process SHOULD send a delivery failure notification message to the From Party that sent the message. The delivery failure notification message contains:

·
·

· a From Party that identifies the Party that detected the problem

· a To Party that identifies the From Party that created the message that could not be delivered

· a Service element and Action element set as described in Error! Reference source not found.
· a QualityOfServiceInfo element with deliverySemantics set to the same value as the deliverySemantics on the message that could not be delivered

· an Error element with a severity of:

· Error if the Party that detected the problem could not even transmit the message (e.g. the communications transport was not available)
· Warning if the message was transmitted, but no acknowledgment message was received. This means that the message probably was not delivered although there is a small probability that it was
· an ErrorCode of DeliveryFailure

1.7

·
·

1.7.1

·
·
·
·

27)
28)
29)
30)
31)
32)

1.7.2

1.7.2.1

1.7.2.2

1.7.2.3

1.7.2.4

1.7.3

1.7.3.1

·
·
·
·

1.7.4

1.7.4.1

·
·
1.7.4.2

·
·
·

1.7.4.3

1.7.4.4

1.7.4.5

1.7.4.6

·
·
·
·

·
·
1.7.5

1.7.5.1

1.7.5.2

·
·

1.7.5.3
2 Parameters that need to be specified in the CPA

<DB>The following (or something similar) is not part of the TRP spec but needs to be included in the CPA spec.</DB>
2.1.1.1 Delivery Receipt Requested

The deliveryReceiptRequested parameter may be present as either an element within the ebXMLHeader element or as a parameter within the CPA. See section Error! Reference source not found. for more information.

2.1.1.2 Delivery Receipt Provided

The DeliveryReceiptProvided parameter indicates whether a To Party can provide an acknowledgment message with a type attribute of deliveryReceipt in response to a message. Valid values are:

· Signed - indicates that only a signed Delivery Receipt can be provided

· Unsigned - indicates only an unsigned Delivery Receipt can be provided,

· Both - indicates that either a signed or an unsigned Delivery Receipt can be provided, or

· None - indicates that the To Party does not create Delivery Receipts

If a MSH receives a Message where deliveryReceiptRequested is in not compatible with the value of DeliveryReceiptProvided then the MSH MUST return an Error Message to the From Party MSH, reporting that the DeliveryReceiptProvided is not supported. This must contain an errorCode set to NotSupported and a severity of Error.
2.1.1.3 Reliable Messaging Methods Supported

The reliableMessagingMethodsSupported parameter is a list of the methods that a MSH uses to support Reliable Messaging. It must be a URI. The URI for the ebXML Reliable Messaging Protocol described in section 1) is http://www.ebxml.org/namespaces/reliableMessaging
2.1.1.4 PersistDuration

persistDuration is the minimum length of time, expressed as a [XMLSchema] timeDuration, that data from a Message that is sent reliably, is kept in Persistent Storage by a MSH that receives that Message.

In order to support the filtering of duplicate messages, a Receiving MSH MUST, as a minimum, save the MessageId in persistent storage. It is also RECOMMENDED that the following be kept in Persistent Storage:

· the complete message, at least until the information in the message has been passed to the application or other process that needs to process it

· the time the message was received, so that the information can be used to generate the response to a Message Status Request (see section Error! Reference source not found.)

persistDuration is specified in the CPA.

A MSH SHOULD NOT resend a message with the same MessageId to a receiving MSH if the elapsed time indicated by persistDuration has passed since the message was first sent as the receiving MSH will probably not treat it as a duplicate.

If a message cannot be sent successfully before persistDuration has passed, then the MSH should report a delivery failure (see section 1.5).

Note that implementations may determine that a message is persisted for longer than the time specified in persistDuration, for example in order to meet legal requirements or the needs of a business process. This information is recorded separately within the CPA.

In order to ensure that persistence is continuous as the message is passed from the receiving MSH to the process or application that is to handle it, it is RECOMMENDED that a message is not removed from persistent storage until the MSH knows that the data in the message has been received by the process/application.

2.1.1.5 MSH Time Accuracy

The mshTimeAccuracy parameter in the CPA indicates the minimum accuracy that a Receiving MSH keeps the clocks it uses when checking, for example, TimeToLive. It’s value is in the format “mm:ss” which indicates the accuracy in minutes and seconds.

3 Acknowledgement element

Changes required to the acknowledgement element

3.1 Acknowledgment Element

The Acknowledgment element is an optional element that is used by one Message Service Handler to indicate that another Message Service Handler has received a message.

For clarity two terms are defined:

· message being acknowledged. This is the Message that is has been received by a MSH that is now being acknowledged

· acknowledgment message. This is the message that acknowledges that the message being acknowledged has been received.

The message being acknowledged is identified by the RefToMessageId contained in the MessageData element contained within the Header Element of the acknowledgment message containing the value of the MessageId of the message being acknowledged.

The Acknowledgment element consists of the following:

· a Timestamp element
· a From element

·
· a signed attribute

3.1.1 Timestamp element

No change
3.1.2 From element

This is the same element as the From element within Header element (see section Error! Reference source not found.). However, when used in the context of an Acknowledgment Element, it contains the identifier of the Party that is generating the acknowledgment message.

If the From element is omitted then the Party that is sending the element is identified by the From element in the Header element.

3.1.3 type attribute

delete this section

3.1.4 signed attribute

No change

4 Updated XML Schema

This specifies the only required change to the Schema ...

<!-- ACKNOWLEDGEMENT -->

<xsd:element name="Acknowledgment">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Timestamp"/>

<xsd:element ref="From" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:ID"/>

<xsd:attribute name="type" use="default" value="DeliveryReceipt"/>

<xsd:simpleType>

<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration value="DeliveryReceipt"/>

<xsd:enumeration value="IntermediateAck"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:attribute name="signed" type="xsd:boolean"/>

</xsd:complexType>

</xsd:element>
... to ...

<!-- ACKNOWLEDGEMENT -->

<xsd:element name="Acknowledgment">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Timestamp"/>

<xsd:element ref="From" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:ID"/>

<xsd:attribute name="signed" type="xsd:boolean"/>

</xsd:complexType>

</xsd:element>

5 Non-normative examples of multi-hop

This section is not to be included in the spec but shows a number of alternative message flows that illustrate how the black box approach and multi-hop could work.
[image: image14.wmf]Black Box

Party A

MSH

Message X

Application

Party B

MSH

Routing

Application

MSH

Message Y

1

4

Party C

MSH

Application

Message X

Message Y

2

3

[image: image15.wmf]Black Box

Party A

MSH

Application

Party B

MSH

Routing

Application

MSH

Party C

MSH

Application

Message X

Acknowledgement

Message

1

2

Message X

Acknowledgement

Message

3

4

[image: image16.wmf]Black Box

Party A

MSH

Application

Party B

MSH

Routing

Application

MSH

Party C

MSH

Application

Message X

Message Y

1

7

Message X

Acknowledgement

Message

3

4

Message Y

Acknowledgement

Message

5

6

[image: image17.wmf]Black Box

Party A

MSH

Application

Party B

MSH

Routing

Application

MSH

Party C

MSH

Application

Message X

Message Y

3

4

Message X

Acknowledgement

Message

1

2

Message Y

Acknowledgement

Message

5

6

_1043127475.doc

To Party

MSH

Application

From Party

MSH

1. Message

2. Ack

Message

Application

Message

Acknowledgement

Message

