www.theadvantagegroup.com [image: image1.png]Uniform Code Council, Inc?®

[image: image19.wmf]App Server

XML

instance

Internet

HTTPS

Firewall

Communication

Server

DMZ

Firewall

The Message Transport Layer

is unwrapped and the Message

Manifest is exposed.

Message Transport Layer

Message Manifest Layer

A routing table maps

the component to its

next destination using Manifest.

There maybe multiple documents

to route.

XMLl

 Repository Server

The Command Layer is exposed.

The Command Layer

tells the Application server

how to process the payload

part. The document is processed as per the

instructions in the Command Layer.

Command Layer

[image: image2.wmf]

Draft Provisional Messaging Architecture

Melanie Kudela
Uniform Code Council

Mark Monaghan
Uniform Code Council

Steve Rosenberg
Uniform Code Council

Frann Moser
Uniform Code Council

John Ryu
Uniform Code Council

Don White
Commerce One

Shaji Joseph
Commerce One

Mic Southall
Uniform Code Council

Date: Wednesday, January 17, 2001
Version: 2.0

Copyright 2000 © UCC, Inc., All rights Reserved

1009 Lenox Dr., Suite 202

Lawrenceville, NJ 08648

Table of Contents

11
Executive Overview

1.1
Introduction
1
1.2
Audience
1
1.3
Impact
1
1.4
Objectives
2
1.5
Lead In
2
2
Existing State of EDI
3
2.1
Introduction
3
2.2
Basic Interchange Service Request
3
2.3
Functional Group Control Segments
4
2.4
Transaction Set Control Segments
5
3
Other Architectures
8
3.1
Introduction
8
3.2
xCBL
8
3.2.1
Core Components
8
3.2.2
Header and Envelope
9
3.2.3
Extensibility
9
3.2.4
Message Architecture
10
3.2.5
Acknowledgement
10
3.2.6
Integration with Legacy Systems
11
3.2.7
Unique ID
11
3.2.8
Errors and Error Handling
11
3.3
cXML
12
3.3.1
Message Architecture
12
3.3.2
Unique Id
13
3.3.3
Acknowledgement
13
3.3.4
Extensibility
14
3.4
RosettaNet
14
3.4.1
Message Architecture
14
3.4.2
Integration with Legacy Systems
15
3.4.3
Acknowledgement
15
3.4.4
Unique ID
15
3.4.5
Errors and Error Handling
15
3.5
ebXML
15
3.5.1
Message Architecture
15
3.5.2
Re-use and Extensibility
18
3.5.3
Transmission
18
3.5.4
Unique ID
19
3.5.5
Acknowledgement and error handling
19
3.6
UDDI
19
3.6.1
Message Architecture
19
3.6.2
Acknowledgement and error handling
20
3.7
UCCnet
20
3.7.1
Message Architecture
20
3.7.2
Acknowledgement
20
3.8
Comparison
21
4
Proposed Architecture
23
4.1
Message Layering
23
4.1.1
Message Transport Layer
23
4.1.2
Message Manifest
24
4.1.3
Command or Response Layer
24
4.1.4
Data Layer
26
4.2
Global Identifiers
27
4.3
Reusable Documents
28
4.4
Context Sensitive Message Definitions
30
4.4.1
The ebXML Approach – An Overview
30
4.4.2
The Problem-Statement
31
5
Message Flow
35
6
Contrasts
37
6.1
Message Layering
37
6.1.1
Message Transport Layer
37
6.1.2
Message Manifest Layer
37
6.1.3
Command or Response Layer
37
6.1.4
Data Layer
38
6.2
Unique Identifiers
38
6.2.1
xCBL
38
6.2.2
cXML
39
6.2.3
ebXML
39
6.2.4
RosettaNet
39
6.2.5
UDDI
39
6.2.6
UCCnet
40
6.3
Re-usable Documents
40
6.4
Context Sensitive Message Definition
40
6.4.1
ebXML
40
6.4.2
xCBL
40
6.4.3
UDDI
41
7
Benefits
42
7.1
Benefits Overview
42
7.2
Benefits Detail
43
7.2.1
Small and Medium Sized Enterprises, (SME)
43
7.2.2
Global Document Repositories
44
7.2.3
Reusable Documents
45
7.2.4
Object Oriented (OO) Design
46
7.2.5
Unique Document Identifiers, (GLN and GTIN)
46
7.2.6
Minimize Integration
47
7.3
Benefits Summary
48

1 Executive Overview

1.1 Introduction

This document is a draft proposal for core message architecture for the Global EAN.UCC EC Strategy. This architecture is critical to a successful rollout of a new Internet message set. It must consider the current EDI legacy issues but must temper these issues against new Internet capabilities, large-scale implementations and the expansion of existing B2B (via EDI) from thousands of users to hundreds of thousands of users.

This new architecture has a very tall order to succeed, not only on paper, but also in acceptance with Solution Providers, member companies, and the technology community.

Successful acceptance, adoption and use will be the true judge of the quality of this work.

1.2 Audience

This new architecture has a major impact on seven primary audiences:

· Our member companies (both UCC and EAN)

· Large scale implementation user communities (UCCnet)

· Global Exchanges

· Internet Communication Solution Providers (SP)

· XML translation SP

· ERP systems SP

· UCC and EAN as Standards bodies

1.3 Impact

All parties agree that moving to an XML standard to communicate will create significant impact on the existing EDI installation base. But, keep in mind, this installation base represents a small percentage of UCC member companies. Granted, these few represent the larger companies, but one of the primary advantages of XML is the potential to expand B2B communications to all size companies supported by UCC and EAN. XML should expand the B2B arena to hundreds of thousands of UCC and EAN member companies.

Our experienced EDI customer base already understands the significant communication infrastructure changes required that enable the Internet. The communications savings will easily offset this cost.

In addition to this, the architecture we adopt will require EDI member companies to change integration into legacy systems. This new architecture must minimize the legacy integration impact but enable the new message sets to embrace the capabilities that the Internet offers. The result, will allow companies who are already doing B2B via EDI to adopt this technology, but encourage large-scale adoption by the Small and Medium Sized Enterprises (SME). This will create critical mass adoption to achieve cost reduction to benefit all participants in the Retail Supply Chain.

1.4 Objectives

To adequately evaluate this proposal, we must define some guiding principles and objectives for a new architecture. The primary objectives are:

· Minimize legacy ERP integration impact

· Enable SME’s to adopt this new technology

· Leverage Internet capabilities to move data in more creative ways

· Enable known messaging needs based on industry knowledge of exchanges, processes and pilot experience, i.e. Global Document repositories, one to many and multi-hop communications etc…

· Embrace a message set based on OO technology to create and maintain standards quickly, efficiently and in a collaborative consensus building environment

· Resulting message architecture must be flexible enough to grow as new technologies emerge

· The message architecture must define a way to uniquely identify documents

· A method to deal with extensions

1.5 Lead In

To adequately define, compare, and provide the reader with enough information to take a position on the value of this proposed architecture, below are the following sections to help expose the issues and quantify the value of this proposal.

· Existing State of EDI

· Other Architectures

· Contrasts

· Proposed Architecture

· Benefits

From this information, these concepts are up for review, comment and approval by UCC and UCCnet executives.

2 Existing State of EDI

2.1 Introduction

This section discusses the current Electronic Data Interchange structure, as approved by the Accredited Standards Committee (ASC) X12, for the development of uniform standards for electronic interchange of business transactions. In particular, the focus will be on the Interchange Control Structures, which handle encoded business transactions through a data transmission.

The interchange control structure is designed to satisfy the basic requirements for enveloping and routing electronic business data.

The Communications Session is an all-inclusive term that refers to the uninterrupted flow of data transferred between two and only two independent computer systems.

The transmission structure of EDI provides the participant with multiple levels of control to ensure data integrity within a given transmission, functional group, or transaction set. This is accomplished through the use of header and trailer control segments designed to uniquely identify the start and end of transmissions, functional groups and transaction sets.
2.2 Basic Interchange Service Request

The Interchange Control Header (ISA) and Interchange Control Trailer (IEA) segments form the basic interchange service request. This is a basic delivery service request for one or more functional groups (batches) of data.

The use of a Transmission Control Header and Trailer is required to identify the source of a transmission group to the recipient (in the Header) and a count of functional groups within the transmission for control purposes (in the Trailer).
The ISA segment marks the beginning of the transmission of one or more batches of EDI transactions.

The ISA provides the sender identifier of the main processing center from which the file is transmitted, and the receiver identifier of the main processing center to which the file is destined. Existing VAN networks read the ISA and are able to direct the transmission to the appropriate processing center.

The ISA also carries within it a date/time stamp, version information for the ISA itself, and a control number to which all of the appended batches belong. Under EDI architecture, the control number assures both the original and receiving points of the uniqueness of the batch of transactions they are receiving. Duplicate files would therefore be captured and held for investigation.

The IEA segment denotes the end of an interchange, and carries with it the same control number as resides in the ISA. Additionally, the segment carries a count of the number of batches that were in the transmission. This allows the processing application to verify the completeness of the data received.

As part of the traditional setup of EDI transactions, VANs assume responsibility for the routing of the transactions to the destination point. The VANs handle establishment of the inter-connects necessary for delivery of the files. The sender of the file therefore, did not have to concern himself with data communication routing instructions, and therefore views it as a point to point transmission.
2.3 Functional Group Control Segments

The functional group is delineated by the functional group header (GS segment) and the functional group trailer (GE segment).

The use of the Functional Group is required for identification of the application type.
Within the ISA structure, the GS segment marks the beginning of a functional group or batch of related documents/transaction sets. A functional group represents a group of transactions that are destined for a particular company unit, division or functional area within a corporation. This allows for recognition of different functions within a corporation (transportation, accounts payable, accounts receivable, purchasing, finance, etc.) and thereby allows for the batches/transactions to be routed efficiently to their appropriate processing center.

The GS segment carries an application sender identifier as well as a receiver identifier, which is used for routing of the batch within the processing center. The functional group also carries a date/time stamp as well as version information, which allows for appropriate processing of the transactions.

The GE segment denotes the end of a batch and carries with it the same control number as resides in the GS. Additionally, the segment carries a count of the number of transactions that were in the batch. This allows the processing application to verify the completeness of the batch.

2.4 Transaction Set Control Segments

The transaction set is delineated by the transaction set header (ST segment) and the transaction set trailer (SE segment). A transaction set is comprised of a series of segments, which in turn represent logical groupings of data elements.

The use of Transaction Set Header, Trailers, and Identifier is required to set boundaries marking the beginning, end, and identification of the transaction set.
The ST segment marks the beginning of each transaction set, and carries the transaction set identifier as well as a control number for the transaction. As an example, an invoice transaction is designated as an “810”, which the EDI translator uses for processing and verification of the data in the transaction. The ST segment is followed by a series of other segments which comprise the transaction set, such as date information, name and address, line item details, and appropriate totals. The transaction ends with an SE segment which includes a count of the number of segments from the ST through SE segments, as well as the control number that is in the ST segment. This allows the EDI translator to verify that it has received a complete transaction.

Because EDI was based on existing paper documents (item/catalog, invoice, purchase order) certain transactions are designed for multi-functional use and incorporate Add, Change, or Delete functionality within the document.

An example of an EDI price document may look like this:

ST*879*0001~

G91*W~

N1*VN*THEPACKAGEDGOODSSUPPLIERCOMPANY*9*0495670100000~

N1*BY*YOUR NEIGHBORHOOD RETAILER*9* 4543890010120~

G62*09*19990725~

G62*87*19990801~

G93*1*40*PL*CARLOT~

G93*2*300*CA*LTL MAINLAND~

G28*001234500002*012345000027*UK*10012345000027~

G20*12*20*OZ~

G69*CEREAL~

G40*1*38.40*****CA~

G40*2*39.40*****CA~

SE*14*0001~
The completed structure of an EDI transmission then appears as:

ISA

Envelope Header

 GS

Batch Header

 ST

Transaction Set Header

…….data segments, comprising a transaction

 SE

Transaction Set Trailer

 GE

Batch Trailer

IEA

Envelop Trailer

There may be one or more ISA/IEA envelops in a file.

There may be one or more GS/GE batches in a file.

There may be one or more ST/SE transactions in a file.

Therefore, what we have are a series of data structures that allow the system to:

· Verify the completeness of a received file

· Verify the completeness of one or more batches of transactions

· Verify the completeness of a transaction itself

· Route a file to its processing center

· Determine the version of the file and data received

· Determine the uniqueness of a file, batch, or transaction (duplicate check)

3 Other Architectures

3.1 Introduction

This section discusses various message architectures used by the e-commerce industry. It is then compared with the proposed message architecture. The need for acknowledgement is also discussed here. The major architectures considered here are:

1. xCBL

2. cXML

3. RosettaNet

4. ebXML

5. UDDI

6. UCCnet

3.2 xCBL

Commerce One’s xCBL 2.0 is endorsed by Microsoft's BizTalk initiative, OASIS, the UN/CEFACT Techniques and Methodologies Working Group, and CommerceNet with eCo Framework Project and Working Group.

xCBL is designed to be used with "messaging" wrappers like Microsoft's BizTalk and IETF's XML Messaging standard.

3.2.1 Core Components

xCBL provides following types of documents and commands

Purchase Order Documents

1. PurchaseOrder

2. PurchaseOrderResponse

3. OrderStatusRequest

4. OrderStatusResult

Invoice Documents

5. Invoice

Availability Check Documents

6. AvailabilityCheckRequest

7. AvailabilityCheckResult

8. PriceCheckRequest

9. PriceCheckResult

Catalog Content Documents

10. PriceCatalog

11. PricingData

ContractPricingData
(extends PricingData)

TieredContractPricingData
(extends PricingData)

12. ProductCatalog

3.2.2 Header and Envelope

Each xCBL document has the following structure:

1. A header module

2. A set of core modules

3. Set of optional attachments

EDI messages generally specify whether acknowledgments are expected, which documents are receiving a response, and so forth. xCBL transmits this type of information in the message header or message envelope. This way xCBL separates the contents of a message (command and data) from information that specifies their routing or their role in the document exchange.

3.2.3 Extensibility

The standard documents of xCBL could be extended or customized by

· Specifying new codes or identifiers

· Attaching files to a document

· Extending a document and appending additional data elements

The XML schema language (SOX) used by xCBL has extension capability for customization. The following example illustrates that:

<elementtype name=”PurchaseOrder”>

is extended to

<elementtype name=”DefensePurchaseOrder”>

<extends name=”PurchaseOrder”>

<model>

3.2.4 Message Architecture

An examination of some of the messages indicated that xCBL combines the command and the type of document it is to effect. However, it does allow for different several different commands to use the same structure. The following examples illustrate that:

3.2.4.1 ProdCatAction

ProdCatAction is the message to add, modify or delete an item to/from a product catalog. ProdCatAction contains the following

· An action that indicates addition, change or delete

· Details of the item if the action is add or modify

· Part Number if the action is delete

3.2.4.2 PriceCatAction

PriceCatAction is the message to add, modify, or delete an item to/from a price catalog. PriceCatAction contains the following

· A PriceCatDetail element containing the details of the element to be added or modified or

· A CatalogDelete element which provides the detail of the element to be deleted

The following XML samples would illustrate this:

For deletion:

<PriceCatAction>

<CatalogDelete>

<PartNum>

...

</PartNum>

</CatalogDelete>

</PriceCatAction>
For addition:

<PriceCatAction>

<PriceCatDetail>

<PriceAction>add </PriceAction>

...

</PriceCatDetail>

</PriceCatAction>
3.2.5 Acknowledgement

xCBL supports an acknowledgement mechanism. For example, PurchaseOrder message has PurchaseOrderResponse; OrderStatusRequest has OrderStatusAcknowledgement.

3.2.6 Integration with Legacy Systems

Integration of xCBL with legacy systems of various parties could be accomplished by the following mapping or document format translation described by Commerce One.

[image: image3.png]Sender D

Mappifg Rules

waing e Jof en Jopf)

CBLD3cument

N
The Internet S’{ }
S/

Receiver

Existing Systems-df| May
CBLDocument

Mapping Rules

Commerce One’s Document Format Translation

The mapping has to be implemented by the respective party based on the type of legacy system used.

3.2.7 Unique ID

xCBL uses unique ID concepts for messages. The unique ID could be a combination of attributes. For example (Agency ID, part ID) combination makes it unique.

3.2.8 Errors and Error Handling

The errors during communication and processing of various messages between various Parties are categorized into the following:

1. Transport errors - the document never reached its destination or was corrupted on the way

2. Document errors - the document that was sent does not conform to the rules as defined in its DTD or the semantics that lie behind it

3. Technical server errors - the document could not be processed successfully because of a technical error of some kind at the server that received the document, or

4. Process problems - these are not real "errors" but indicate, instead, that for some reason, ie, goods out of stock, the document could not be processed to the anticipated or hoped for conclusion

The Transport errors are left for the underlying transportation mechanism to handle. xCBL documents do not contain anything transport specific to facilitate this.

Document errors can be reported simply by pointing to the offending part (or parts) of the document and using a code to define the nature of the problem.

Technical server errors can require that messages are resent or some sort of recovery at a server is made. There needs to be some method of communicating back to the sender of a document what they can do to recover.

Process problems need to indicate what sort of alternative business process the sender of the document might take to recover from the unsuccessful processing of the original document and achieve a satisfactory business outcome.
3.3 cXML

Ariba’s cXML is an open language for the transaction requirements for electronic product catalog, cXML punchout catalogs, procurement applications, and buying communities.

3.3.1 Message Architecture

The messages defined in the base cXML protocol are:

· PunchOutOrderMessage

· SubscriptionChangeMessage

· SupplierChangeMessage

The following are the request messages:

· ProfileRequest

· OrderRequest

· PunchOutSetupRequest

· StatusUpdateRequest

· GetPendingRequest

· SubscriptionListRequest

· SubscriptionContentRequest

· SupplierListRequest

· SupplierDataRequest

The following are response messages:

· ProfileResponse

· PunchOutSetupResponse

· GetPendingResponse

· SubscriptionListResponse

· SubscriptionContentResponse

· SupplierListResponse

· SupplierDataResponse

A closer look at the following messages indicate that the associated operations (like add, delete, and update) are embedded within the message. For example:

3.3.1.1 OrderRequest

Here, the type of command being utilized is a parameter in the header of the request. In this case, the order is a “new” order or in other words the order is being added. In this circumstances, the data and the command are being intermingled.

<OrderRequest>

<OrderRequestHeader orderID="123456" orderDate="2000-09-04T09:01:01" type="new">

...

</OrderRequestHeader>

...

</OrderRequest>
3.3.1.2 SubscriptionChangeMessage

Again, here, the command related to the document or description is a “SubscriptionChangeMessage” with a type of “update”. The document in this case, is separated from the command. However, the command is a mixture of command specific info (“ChangeMessage”) and document type (“Subscription”).

<Message>

<SubscriptionChangeMessage type="update">

<Subscription>

<InternalID>1234</InternalID>

<Name xml:lang="en-US">Q2 Prices</Name>

<Changetime>1999-03-12T18:39:09-08:00</Changetime>

<SupplierID domain="DUNS">942888711</SupplierID>

<Format version="2.1">CIF</Format>

</Subscription>

</SubscriptionChangeMessage>

</Message>
cXML supports attachments with business messages using MIME.

3.3.2 Unique Id

The unique ID concept is provided in cXML with a payloadID in a cXML envelope. Please see the contrast section for more specific information.

3.3.3 Acknowledgement

cXML follows a Request/Response transaction model, ie, OrderRequest has an OrderResponse message for acknowledgement.

3.3.4 Extensibility

cXML supports extensions from the existing message set by utilizing qualifiers when appropriate. The message set however, is based on DTD’s so the use of inheritance is much more complicated.

3.4 RosettaNet

RosettaNet provides the implementaion framework for packaging, routing, and transferring of business messages. It also provides specification of business signal messages used in the execution of RosettaNet Partner Interface Processes (PIP). RosettaNet uses a peer-to-peer business exchange model for communication between trading partners and applications.

3.4.1 Message Architecture

A RosettaNet Business Message always contains a Preamble Header, a Delivery Header, a Service Header and a Service Content. Service Content comprises an action message or a signal message. If Service Content is an action message, one or more attachments may be included. As shown, the Headers and Service Content are packaged together using a MIME multipart/related construct.

[image: image4.wmf]Attachment

n

Attachment 1

Service Content

(Action / Signal Message)

Service Header

Preamble Header

...

MIME

multipart

/related

Headers

Payload

RosettaNet

Business-Message

Delivery Header

RosettaNet Business Message

The overall purpose of these headers is for the recipient to be able to:

· Identify the message as a RosettaNet Business Message

· Identify the context of the message

· Identify the sender for authentication

The attachments could be a PDF file, word document, or files in GIF or TIF and other formats. These attachments could be referenced from the business content (XML documents).

A RosettaNet Business Message is a combination of the individual business message components packaged into a MIME message, with appropriate MIME headers. The packaged message can be transmitted via any transfer protocol.

RosettaNet business messages are transfer protocol independent.

3.4.2 Integration with Legacy Systems

The integration with legacy systems in RosettaNet is accomplished through private processes as shown in the diagram below.

[image: image5.wmf]Public

processes

Public

processes

Private

processes

Private

processes

Back-end

Back-end

Internet

RosettaNet Process

3.4.3 Acknowledgement

RosettaNet provides acknowledgement to business messages. When a message is received by the trading partner and is found to be structurally and syntactically valid, a positive signal will be sent as the acknowledgement.

3.4.4 Unique ID

A Delivery Header is used to facilitate routing messages through hubs that contain a globally unique tracking ID. An instance of the Delivery Header is always present in a RosettaNet Business message and MUST be added by the initiator of the message.

The InstanceIdentifier in pre-amble instance is a unique identifier that represents the unique instance of a process. Message Instance ID, PIP Instance ID, etc., are other examples.

3.4.5 Errors and Error Handling

RosettaNet handles errors using Negative Signals. A negative signal will be sent to indicate exception errors.

3.5 ebXML

The goal of ebXML is to provide an open XML based infrastructure for electronic business. It is intended for a final solution, not just a framework.

3.5.1 Message Architecture

ebXML is a powerful system of Registries and distributed Repositories. Registry allows process owners to submit, classify, register, and update mapping templates, business process specifications, and data interchange specifications. Repository provides storage and retrieval of various items.

ebXML repository objects are Core components (nouns) and Business Processes (verbs). A transaction contains abstractions of two layers, the core component layer and the business process layer.

A core component is an individual piece of business information or a natural family of business information pieces, Ie, address on an invoice.

A Business Process describes document choreography and overall process interface, ie, “Purchase a Product”, “Send an invoice”, etc.

XML elements in a document instance may contain pointers to Repository objects.

A trading partner can buy packages from ASPs that use existing vocabularies like xCBL, cXML etc. A trading partner can also use components/processes used by its partners.

[image: image9.png]

[image: image10.wmf]App Server

XML

instance

Internet

HTTPS

Firewall

Communication

Server

DMZ

Firewall

The Message Transport Layer

is applied.

Message Transport Layer

Message Manifest Layer

.

The Command is applied

XML Repository Server

Command Layer

The Message Manifest Layer

is applied.

The Message is sent.

[image: image11.wmf]App Server

XML

instance

Internet

HTTPS

Firewall

Communication

Server

DMZ

Firewall

The Message Transport Layer

is unwrapped and the Message

Manifest is exposed.

Message Transport Layer

Message Manifest Layer

A routing table maps

the component to its

next destination using Manifest.

There maybe multiple documents

to route.

XMLl

 Repository Server

The Command Layer is exposed.

The Command Layer

tells the Application server

how to process the payload

part. The document is processed as per the

instructions in the Command Layer.

Command Layer

[image: image12.wmf]App Server

XML

instance

Internet

HTTPS

Firewall

Communication

Server

DMZ

Firewall

The Message Transport Layer

is unwrapped and the Message

Manifest is exposed.

Message Transport Layer

Message Manifest Layer

A routing table maps

the component to its

next destination using Manifest

and the Context Architecture.

The payload is unbundled into its

Composite Schema Components.

The Command Layer is exposed.

There maybe multiple documents

to route.

The result of exploding out validated,

composite schema components based upon the

context rules.

These can now be routed to their destination

Financial Repository Server

Price

Part

Catalog Repository

Server

Item

Part

Order

Repository Server

Order

Part

The Command Layer

tells the Application server

how to process the payload

part. The payload is exposed.

Command Layer

[image: image13.wmf]App Server

XML

instance

Internet

HTTPS

Firewall

Communication

Server

DMZ

Firewall

The Message Transport Layer

wraps around the Message

Manifest.

Message Transport Layer

Message Manifest Layer

The XML Objects are assembled

 into a valid XML Document object,

enveloped in the Message Manifest

and routed to the partner.

There maybe multiple documents

to route.

Applications responsible for their business segment,

populate the XML Repository with XML Objects and

the Command Layer.

Price

Part

Catalog Repository

Server

Item

Part

Order

Repository Server

Order

Part

The Command Layer

tells the Application server

how to process the payload

part. The payload is exposed.

Command Layer

[image: image14.png]COMMERCE =

ONE. =

[image: image15.wmf]App Server

XML

instance

Internet

HTTPS

Firewall

Communication

Server

DMZ

Firewall

The Message Transport Layer

is unwrapped and the Message

Manifest is exposed.

Message Transport Layer

Message Manifest Layer

A routing table maps

the component to its

next destination using Manifest

and the Context Architecture.

The payload is unbundled into its

Composite Schema Components.

The Command Layer is exposed.

There maybe multiple documents

to route.

The result of exploding out validated,

composite schema components based upon the

context rules.

These can now be routed to their destination

Financial Repository Server

Price

Part

Catalog Repository

Server

Item

Part

Order

Repository Server

Order

Part

The Command Layer

tells the Application server

how to process the payload

part. The payload is exposed.

Command Layer

[image: image16.wmf]App Server

XML

instance

Internet

HTTPS

Firewall

Communication

Server

DMZ

Firewall

The Message Transport Layer

wraps around the Message

Manifest.

Message Transport Layer

Message Manifest Layer

The XML Objects are assembled

 into a valid XML Document object,

enveloped in the Message Manifest

and routed to the partner.

There maybe multiple documents

to route.

Applications responsible for their business segment,

populate the XML Repository with XML Objects and

the Command Layer.

Price

Part

Catalog Repository

Server

Item

Part

Order

Repository Server

Order

Part

The Command Layer

tells the Application server

how to process the payload

part. The payload is exposed.

Command Layer

[image: image17.png]COMMERCE =

ONE. =

[image: image18.wmf]App Server

XML

instance

Internet

HTTPS

Firewall

Communication

Server

DMZ

Firewall

The Message Transport Layer

is applied.

Message Transport Layer

Message Manifest Layer

.

The Command is applied

XML Repository Server

Command Layer

The Message Manifest Layer

is applied.

The Message is sent.

The layered message architecture of ebXML is as follows:

Transport Envelop (SMTP, HTTP etc)

EbXML Message envelop (MIME multipart related)

EbXML header envelop

EbXML header document

Manifest

Header

EbXML payload envelop

Payload Document(s)

3.5.2 Re-use and Extensibility

Re-use and extension methodologies are under development for ebXML

3.5.3 Transmission

Packaging is done as MIME multipart related outer wrapper with XML headers and the payload. The header will contain source destination, application, and auxiliary elements such as message ID, related message information, etc. ebXML supports any network transporting mechanism capable of carrying XML.

The ebXML messaging service has three parts

1. An abstract service interface

2. Functions provided by the messaging layer

3. Mapping to underlying transport services

3.5.4 Unique ID

From the transport and routing specification, the header envelope of ebXML contains a “content-id” that is a unique identifier. Also the payload envelope of ebXML contains a “content-id” that is a unique identifier.

At this time there are no document ids defined. Several of the functionality groups around ebXML have not released any specifications.

3.5.5 Acknowledgement and error handling

The ebXML transport and routing specification specifically calls out an acknowledgement and error handling scheme. This allows for a guarenteed messaging process to take place.

3.6 UDDI

UDDI creates a global, platform independent, open frame-work to enable businesses to discover each other, define how they interact over the Internet, and share information in a global registry. The core components of the UDDI are the business registry and the business registration. UDDI uses SOAP protocol as an envelope mechanism for passing messages.

3.6.1 Message Architecture

The information that makes up Registration consists of the following data structures (objects):

1. Business Entity: This is nothing but a structure containing party information.

2. Business Service: Information about a group of services

3. Binding Template: Information about a service entry point

4. Model: Information about services or taxonomies

These entities are manipulated through commands. There are a set of query type commands and a set of publication commands. The commands themselves mix up the command with the document being affected. For commands that do not require the whole document, unique identifiers can be used instead. These unique id’s take the form of a IETF universally unique document identifier (UUID). For more information on the document ids, please see the Contrast section.

3.6.1.1 find_binding

<find_binding service_Key=”uuid_key” generic=”1.0” [maxrows=nn]

xmlns=”urn:uddi-org:api”>

[<find_qualifiers/>]

<tModelBag\>

</find_binding>

3.6.1.2 find_business

<find_business generic=”1.0” [maxrows=nn] xmlns=”urn:uddi-org:api”>

[<find_qualifiers/>]

<name\>|<identifierBag>|<categoryBag/>|<tModelBag/>|<discoveryURLs>

</find_business>

3.6.1.3 delete_business

<delete_business generic=”1.0” xmlns=”urn:uddi-org:api”>

<authInfo/>

<business_key/>

[<business_key/> …]

</delete_business>

3.6.2 Acknowledgement and error handling

Response messages are used to indicate the acknowledgement upon successful completion.

The first line of error reporting is done by SOAP specification. SOAP fault reporting and fault codes will be returned for invalid requests, or for requests where the intent of the caller cannot be determined.

3.7 UCCnet

3.7.1 Message Architecture

The current implementation of UCCnet has separate messages for commands, ie, AddItem, DeleteItem, ChangeItem, etc.

3.7.2 Acknowledgement

UCCnet supports acknowledgement messages or response messages. All command messages (request messages) have a corresponding response message.

3.8 Comparison

A comparison of xCBL, cXML, RosettaNet, ebXML, and UDDi are given below:

XCBL
CXML
RosettaNet
EbXML
UDDI

Message Architecture
Defines a set of building blocks, but partners may extend and refine them; Provides industry specific vocabularies; Framework is extensible, scaleable, and customizable
Provides components for product catalog, punchout catalogs, procurement applications, and buying communities; Provides extension mechanism and flexibility; Uses DTD
Provides Partner Interface Process (PIP) specification for various business segments; The specifications are scaleable
Provides core components business processes for Registries and Repositories and could be used as mission critical; Architecture is extensible and scaleable
Provides a business registry and business registration as core components

Command Layer
Uses Command tags as wrappers
Commands are embedded in the message
Considered grouping multiple action messages but backed out due to complexities involved

Uses command wrappers for the same type of messages

Document Structure
Provides header, core modules, and attachments
Provides separate header and request; Supports attachments
Provides header, action/message, and attachment
Provides outer wrapper with header, payload, and attachments
Uses SOAP as envelop mechanism

Acknowledgement
Provides mechanism for acknowledgements
Provides response messages
Provided by signal mechanism
Provides acknowledgement scheme
Uses response messages

Integration with Legacy systems
Mapping/Document format translation is specified for legacy system integration by various parties
Recommends Adapters for legacy system integration
Accomplished through private processes
Outside of their scope
Outside of their scope

Unique ID
Uses Unique ID concept
Uses Unique ID concept
Uses Unique ID concept
Does not use Unique ID concept; Probably may change later
Uses unique ID concept

Error Handling
Supports Transport, Document, Technical server, and Process level error handling
Supports error handling at various levels
Provided by signal mechanism
Provides error handling scheme
Supports

Other
Open Buying on the Internet (OBI) protocols are included as standard building blocks
e-commerce hub does authentication and routing

Provides context and context rules for messages; Trading partners can use existing vocabularies like xCBL, cXML etc

Reusable Documents
Supports
Supports
Supports
Does not support
Supports

Message Manifest

Uses hub based routing mechanism
Provides manifest part in the service header
Provides manifest as part of the header document

Transport Layer
Leaves for other parties
Uses HTTP and URL Form Encoding
Independent of transport mechanism; Also defines custom layer
Uses HTTP & TCP/IP
Uses SOAP

4 Proposed Architecture

There are four main concepts behind the proposed architecture

· message layering

· unique identifiers

· reusable documents

· context sensitive message definitions

Each concept will be explored below.

4.1 Message Layering

The first concept being introduced with the new message set is the concept of layering. This is where the functionality of a message is separated into different layers. Each layer will then wrap sub-layers to form the message being created.

The different layers are:

· message transport

· message manifest or table of contents

· command or response

· document or data

This concept is analogous to the separation of functionality utilized in the development of software. The development architecture describes where different functionality, interface, business logic and data storage are separated and developed separately. This allows for some part of the application to change without affecting others. For instance, if the interface changes or is replaced, it would just need to interact with other layers in the same way as the original software. The same goes for all business logic layers with the data store.

Below, the different layers and its responsibilities are described.

4.1.1 Message Transport Layer

This layer will consist of tags to transmit a message from a sender to a set of receivers. The information contained in the layer could supply info such as; sender, recipient, guaranteed message delivery info and message id. The message transport would then wrap around multiple commands.

Separating this layer allows flexibility to adopt other standards later. Examples of such standards are SOAP (a W3C note), the Transport, Routing and Packaging initiative of ebXML and the emerging XML Transport (W3C). UCC will evaluate the standards and utilize one of them for the message set.

Issues that this layer should address include multi-recipients, guaranteed message delivery, multi-hop, security information and other delivery issues. This layer will wrap around one message manifest structure.

4.1.2 Message Manifest

This layer will allow applications that receive a message to dispatch them to the appropriate internal system for processing without having to delve deep into the message commands and associated documents. It has a one to one relationship with and is encapsulated by the Message Transport Layer. This layer could be read by, modified and written to by the application without having to modify or interpret the lower layers. This summary would serve as a table of contents that indicates what is contained within the message. It would be mapped against an internal routing table within the application to provide the intelligence of where to route the message next. In the case of multi-hop, this layer would allow the receiving application to route it back onto the network for another receiver, if the next destination were outside the domain of the receiving entity.

The contents of this layer could take many forms. It could identify all types of documents mentioned in the message. Lets take an example where a message contained an add command with two price documents and it also contained a delete of a party document. In this case, the manifest would list price and party as the documents that the message would deal with. When an application received this, it could realize that the document needed to be routed to the systems where price information was handled, perhaps an item catalog and a purchase order/invoice system. Seeing that there also is a command associated with party information, the message would also be routed to any system that required updates on trading partner data. If one of these systems was a third party system, say a reseller that required that update, the message would be routed outside the internal network and to the reseller’s site.

There are two ways this re-routing of the messages between multiple applications can occur. The message can be sent as a whole to the needed systems. Any data that that system does not need can be simply ignored. Or, the message can be split apart into its components with the pieces being sent to the appropriate place. This implies a sophisticated routing/translation application that would have to be built or bought.

Along the same lines, the command that is being used may also be useful in the manifest. Let’s argue for a moment that the command was Publish. One trading partner decides to create functionality associated with publish that takes any and every document and contained in the command and sends it to a web server for internal access. Whenever a publish command is received, the message would need to be passed off to the system that would execute this function.

Therefore, the suggested information to be contained in a message manifest would be a listing of the commands and the document types they affect. Multiple commands could then be specified that the manifest would wrap around.

4.1.3 Command or Response Layer

The purpose of this layer is to define an action that is to be performed on the receiving end. Examples of a command include Add, Change, or Delete. Commands, however, are not solely restricted to these more basic functions. Commands can be complex requiring quite a few other parameters in order to execute. One possible example of this could be a Publish command. The purpose of this command is to tell a receiver to publish the data references contained in the structure of the command. It requires other pieces of data in order to execute that function. Information such as who to publish to, what date to publish on, etc. needs to be identified. This layer will allow sophisticated commands to be created in an extendable fashion.

All commands inherit from a base tag where elements common to all commands can be placed. See Figure 1 for an UML view of what this would look like.

[image: image6.wmf]Command

DocumentCommand

DocumentIdentifierCommand

QueryCommand

Figure 1: Base Command class

What information the command should act on is defined within the command layer. This will include information specific to the command and also include data defined within the Data layer.

Below in figure 2, is an example of how add and change could be implemented:

[image: image7.wmf]DocumentCommandType

ADD

CHANGE

<<enumeration value>>

Document

creationDate : SimpleDate

<<optional>> communicationVersion : String

<<optional>> contentVersion : String

lastUpdateDate : SimpleDate

<<enumeration value>> status : String

<<abstract>>

DocumentCommand

1

1

1

1

1..*

1

1..*

1

SimpleDate

date : String

1

1

+effectiveDate

1

1

Figure 2: Document Command

Note that if there are other commands that require this similar structure only a new “DocumentCommandType” would need to be added to the DTDs/Schemas. The code that interprets this message will already exist. All that would have to be done is define how the new command will affect all corresponding documents.

The above example of a command is an extremely generic structure. There have been suggestions that what be used is an aggregate of the command and the document it is affecting to identify the command. For example, instead of utilizing the above-mentioned structure, an “AddItem” structure is created where only item definitions would be present. This is the current approach with UCCnet. Although this works fine, it does not utilize reuse and leads to a much larger set of tags that applications would need to know and understand. Also, on strictly a theoretical basis, it mixes the command and data layer.

Again, this separation of the “business logic” or the commands from the data allows the command layer to evolve as new types of systems are developed. Different architectures will always demand different types of commands. It is conceivable that there will be several different types of commands between a variety of systems. In fact, different applications may compete on the type of functionality they support. An interface between two companies may just be the ftp of documents from one site to another, with no command involved. Granted, allowing for multiple of types of commands is not ideal, for the more types of interfaces there are, the more difficult it would be for interoperability. But, it would be very difficult for one group to model each and every type of b2b architecture that could possibly be utilized. A flexible, extendable architecture is preferred. Now, this is not to say that some set of standard commands should not be “standardized”. This will certainly go a long way to help every one with a starting point.

4.1.4 Data Layer

This layer defines the information or documents that the command is to operate on. These entities typically represent business information or documents that are exchanged between trading partners. Typical examples of this include Item information, Party information, purchase orders, invoices, etc.

This layer can take three different forms:

· Document itself – this is the complete physical representation of the entity being acted upon. All documents will inherit from a base class that will contain tags that are common to all documents. Examples of common tags could include creation date, content version number, last update date, etc. Figure 2 provides a UML view of such a base class.

[image: image8.wmf]Document

creationDate : SimpleDate

<<optional>> communicationVersion : String

<<optional>> contentVersion : String

lastUpdateDate : SimpleDate

<<enumeration value>> status : String

<<abstract>>

Item

Party

Invoice

Order

Figure 2: Document Base class

· Pointer to document (GLN, GTIN, Unique Identifier) – in commands where the document has already been sent, or its existence is known, it would be acceptable to only send a pointer or identifier that represents that data. Take the example of the command Delete. Such a command would assume that the document that is to be deleted has already been received. All that would be necessary for the delete to work is the identifier for that document.

· External reference to document (URL) – instead of embedding the document in the command itself, what is sent is a URL to the correct document. When a trading partner receives such a command, it would be up to them to retrieve that information via an http get operation.
Note that it is the intent of this architecture to allow documents to be created and stand-alone. This opens up possibilities for how that information is stored. The information can be kept in XML and stored in document repositories and used when necessary. The document could be broken up and placed into database tables and reassembled on the fly. It could be placed on a file system and served up through a web server using stylesheets to allow it to be easily understood.

Multiple instances or versions of the documents can and should be maintained for access at a later date. By inheriting from the base class, all documents will have a “contentVersion” and “lastUpdateDate” fields. These can be used to track versioning meta-data to track what instance a document is. This also allows parties to ask for specific versions if the need arises. Along the same lines, a “communicationVersion” attribute has been added. It can be used to identify the version of the DTD or communication system that document was created with.
This versatility is all achieved by separating the command from the document. If the document contained command information, that command would no longer be relevant when it was placed in the document repository or database. Lets say the command that allowed an item document to be sent was “Add”. If that document were then stored as is in a repository, the “Add” command would be stored with it, which does not make sense. If the command was more complicated than simply a parameter indicating what should be done, like the “Publish” command described above, it gets worse. Document information could be considered to be persistent information. Commands are transitive and only live until they are executed.

4.2 Global Identifiers

An important part of this architecture is the concept of global identifiers. This allows every persistent data object defined in the system to be identified with an identifier that is unique around the globe. This then allows commands to use references to these documents instead of needing to specify the entire structure again. Commands that would make use of such a structure include Delete. What is needed is an identifier, such as GLN and GTIN, which are kept globally unique by UCC, except be able to define them for other business entities besides just item and party.

In traditional EDI, messages and documents sent need only be unique between two partners. This is due to the peer-to-peer nature of EDI. It uses a transaction set control number that uniquely identifies each document between the two parties. This works for EDI using a VAN or peer-to-peer communications, but does not help when that same document is to be sent to multiple parties. Since the Internet opens up the one to many option, the transaction set control number concept does not work.

As a result, a new set of identifiers are required that allows a company to define an identifier that is global in scope while being easy to create and track. A couple of possibilities exist. One would be to use the UUID standard created by the standards body IETF. This standard defines an algorithm that is guaranteed to be unique through the year 3400. It creates a 128 bit unique key that is often used in distributed computing environments such as CORBA. However, in order to generate this number, one must have specific code written or bought. For many SMEs this is not a good option.

Another would involve the combination of several different fields which when taken as a whole would uniquely identify a document. Lets take the owner’s GLN, an owner generated identifier (referred to as the entity id) and a document type (Purchase Order, Invoice…) and create such a structure. As long as the owner makes sure that the entity id, which the owner creates, is unique, the three fields taken, as a whole would globally identify the document it was created for.

Here is an example:

Type: PurchaseOrder

GLN: 1234567890123 (representing a trading partner)

Identifier: B89890

As long as the trading partner does not create another PO with a “B89890” identifier, the example will be globally unique to identify the document it is associated with.

The specific algorithm utilized for the entity id is up to the creator of the document. It need only be under 48 characters in length. It can be composed of any ASCII characters including spaces. Something like “Grocery Price List-2” is a legal value.

The entity id need only be unique for the type of document it is being defined for. So what could happen is that an owner could create a purchase order with the “B89890” identifier and an invoice with the same identifier.

It is suggested that the same entity identifier not be reused for a substantial period of time. If we use the GTIN philosophy, after a GTIN is deleted, it can not be reused for 5 years. However, this is not a requirement. As long as it is safe to reuse the same unique identifier without the trading partners that the owner is dealing with getting confused on the document’s intent, and that information is communicated to those trading partners, this should work OK.

4.3 Reusable Documents

Another concept being utilized in this architecture is the concept of business document reuse. This is where a particular business entity can be reused in a variety of different business processes. Item documents are examples of this. An item and its identifier, GTIN, are reused in multiple instances. A GTIN is referenced in pricing information, purchase orders, invoices, etc. It is in essence being reused for those different business processes. In order for these processes to work, item information needs to have been exchanged first.

Although item is a fairly obvious example, this concept can then be applied to other similar entities which may not of been thought of in the same way in EDI or other electronic information exchanges. Lets look at the pricing business process. Realistically, five different types of business entities can be identified:

· The entity that actually identifies the price

· A bracket that defines a range at which that price is good for

· A set of payment terms for when and how the items should be paid for

· Allowances or changes related to the price

· A price list which ties all these entities together and organizes them

In the past, these entities may have been defined in one structure that was sent all at the same time. The price for EDI would be made up of all five pieces of information in one shot. The brackets, allowances, prices and payment terms would be sent all together. If a price for another item used the same bracket, that bracket would then be resent in the price document for that item, even though it was the same information.

If instead these entities are split up into 5 different documents, the documents can be reused much like the item document described above. A separate bracket document is created. It is sent to a trading partner. Later a price document is created which uses this bracket (through the bracket’s unique identifier) and sent to the same trading partner. The receiver will read the price document and utilize the bracket sent earlier to form a complete picture of the price being offered. If another price document is created for a different item with the same bracket, there is no need to resend the bracket. The bracket will be on their file system or in a database some place.

This logic can also apply to other business processes. Brackets are used in purchase orders and invoices as well. This same bracket document and its associated identifier can be referenced in the documents utilized by those processes.

Simple Example: A bracket document.

<BracketList>

<EntityIdentifier>

<entityId>Bracket-TruckLoad</entityId>

<contentOwner>

<globalLocationNumber>0123456789012</globalLocationNumber>

</contentOwner>

</EntityIdentifier>

<Bracket>

<bracketQualifier>AU</bracketQualifier>

<bracketDescription>

<Description language="EN">

Determines amount that can be placed in one truck load

</Description>

</bracketDescription>

<QuantityRange unitOfMeasure="LBS" min="10000" max="20000"/>

</Bracket>

</BracketList>
A Price document using the bracket described above:

<Price>

<EntityIdentifier>

<entityId>Price Grocery-1</entityId>

<contentOwner>

<globalLocationNumber>0123456789012</globalLocationNumber>

</contentOwner>

</EntityIdentifier>

<price currencyISOCode="USD" amount="12.45"/>

<priceType>contract</priceType>

<ItemIdentification>

<globalTradeItemNumber>1234567890123</globalTradeItemNumber>

</ItemIdentification>

<PriceBracketList>

<EntityIdentifier>

<entityId>Bracket-TruckLoad</entityId>

<contentOwner>

 <globalLocationNumber>0123456789012</globalLocationNumber>

</contentOwner>

</EntityIdentifier>

</PriceBracketList>

</Price>
Another price document utilizing the same bracket:

<Price>

<EntityIdentifier>

<entityId>Price Grocery-2</entityId>

<contentOwner>

<globalLocationNumber>0123456789012</globalLocationNumber>

</contentOwner>

</EntityIdentifier>

<price currencyISOCode="USD" amount="15.00"/>

<priceType>listOrCatalogue</priceType>

<ItemIdentification>

<globalTradeItemNumber>6789012345678</globalTradeItemNumber>

</ItemIdentification>

<PriceBracketList>

<EntityIdentifier>

<entityId>Bracket-TruckLoad</entityId>

<contentOwner>

 <globalLocationNumber>0123456789012</globalLocationNumber>

</contentOwner>

</EntityIdentifier>

</PriceBracketList>

</Price>
Note how the last two price documents reused the bracket document that was defined first. The Bracket-Truckload bracket definition can also be used when creating purchase orders and invoices. It also could be that operations can be set up where suppliers are told not to send demand side partners any information except for a specific bracket. Bracket and price synchronization becomes the same as item or party synchronization.

If the document had to be sent internally as well as externally, say to a reseller or other third party, it can. It is a standalone schema-validated component in its own right and could be enveloped and routed outside of the enterprise’ s network.

4.4 Context Sensitive Message Definitions

The Context Architecture is a concept of the ebXML Core Component Team. Because the CC Architecture has not yet been fully defined, we will expand on this concept, and contribute our findings to the CC Team for furthering their own work.

The benefit to us for extending on the work of the ebXML, is that there are already a number of vendors who participate on the Proof of Concept Team and who would be piloting the tools necessary to implement our work. One of the aspects of our program is to facilitate the development of tools for our user community by enlisting the vendor community to implement the tools based on our standards. By aligning our standards and having them adopted by the ebXML, we get a significant gain in that area.

4.4.1 The ebXML Approach – An Overview

A Core Component specifies just the elements, which are common across all industries and all business processes. These named units of information contain the data that is transferred between two systems. A named group of related Core Components that provide the information needed to answer all the questions to define a particular business process message is a document. Core Components are defined as smart components, which are a modeling of syntax-neutral data structures at all levels of the message hierarchy. We are more interested in the set of components that are common across the documents, which are already or will be residing in the UCC and UCCnet domain.

While analyzing the core components in a set of documents, you notice that there are variations in the document structures that need to be preserved. For example, the required elements in a document might vary based upon industry and business process. Context is expressed as hierarchical classifications drawn from various standards (business sub-process, industry, region and geography, product, legislative.) The idea of Context is that the structure of a piece of business information is defined by the purpose which it serves within a business process, an industry, region etc.
4.4.2 The Problem-Statement

Individual document schemas could be created from business class models representing each industry or geographic need. However, the end result would be that there would be a very large quantity of schemas that contain these variations of classes and attributes.

The various business documents, for example, Purchase Order, Purchase Order Acknowledgement, Change Order, Change Order Acknowledgement, Order Request, are highly redundant, from the point of view of Core Components and Composite Components. In the case of the documents listed, they can all be said to be of one business process type, that of Order. Further analysis shows that there are patterns within the documents:

The documents have structure;

Header; body, sequence;

Common core components occur in each of them

DateAndTime; Address; AllowancesOrCharges

By using schema extension mechanisms, similar to object-oriented sub-classing, the CC Team proposes to extend the Core Components Schemas, and provide Extended Schemas with the appropriate elements to support a particular usage context. The extension mechanism is necessary to extend the core components to provide the variations that will adequately support industry and business usage. In EDI, this step requires the use of implementation guide manuals to explain to trading partners how they need to talk to one another. The UCS and VICS EDI manuals are examples of the implementation guides required. The need for guides is due to the many options in sub-classes or elements that will result from the extensions.

Context solves the problem by providing a dynamic way of specifying exactly what elements are required in a given context. The CC Team has defined Context as embodied by 4 entities:

1. Core Components

Features of Core Components

· They are easily managed as parent or child elements or datatypes or archetypes.

· They are not identified as being required or not required.

· They have neither sequential or hierarchical order nor frequency indicators which are dependent upon the general or specific industry, product service or process

· They are all likely to have attributes.

· The flexible non-target namespace approach would represent this architecture best.

· The Benefits of Core Components are that once the information is identified, it may be used, reused, and repurposed.

· It may be used as units (elements and element cases) or in a modular manner.

2. A Context Classification scheme

· By describing context at many levels we can describe patterns of use at business levels

· Specifies the acceptable values for use in a Context.

· Business Process: Purchasing; Industry: Aerospace are some examples

· Context Identifiers will be listed for each: industry, product, region, temporal, legislative, processing requirements, transport/Logistics, Teleology/Purpose, Role/Profile and business sub-process.

· The context-naming scheme will be derived from the classification.

3. A Context Instance

· An XML instance.

4. Context rules Definition for a document

· Specifies how to assemble the schema of a document for a given context.

· Ex. If Europe is the Region Context then the Context Rule Definition for a Purchase Order will indicate that the EuropeanTax element (and not the NorthAmericanTax element) is used in this context.

· Will be applied to refine existing core documents and to refine the elements in an existing core document. Refinement maybe additive (derive by addition) or subtractive (derive by restriction) .

· Also specify the optionality of elements.

· Are also described as Core Context Components and as Metadata

· Contain the information associated with the subject matter content that is essential to its meaning and will change the information content.

· May or may not be used in the presentation of data (the XML instance) but is important for content management or may add meaning to the understanding of the information.

· May include all of the terms used as the element markup tags

· May include tracking information data about the workflow of the content

· Include Security levels and permission types

· Can have attributes attached to core content

· Rules associate Core Components with context

· Rules could be used to generate extended schema

An XML instance is determined by a Context instance, a Context Rules Definition instance, a set of schemas (presumably composite components) from the Core Component library and schemas from other conformant libraries. If a trading partner had access to a Core Component Library, a Context Classification Scheme, and a Rules-based way of specifying how to assemble the core components into a document (schema and instance) then you could specify (and unbundle) the contents of any document.

An ebXML context is a specific set of values, within the multi-dimensional categories described by the set of contextual attributes.

An Example

Hypothetical comparison of GCI and UCCnet Contexts

Context Architecture
SOURCE UCCnet
SOURCE GCI
XML Schema Construct
Appears in XML
XPath
Reused
Repur-posed

Source

Prologue
Yes

No
No

Context

Import / namespace
May

Core Component

Include

Element

Attribute
May

Command Layer
Add
Add
Include
Yes
Command:Add/
Yes

Business Process:
Order
Order
Include
Yes
Command:Add/BusinessProcess:Order/
Yes

Industry
Grocery
Retail
Type
No
Command:Add/BusinessProcess:Order/Industry:Retail
No
Yes

Region
US
France
Type
No
Command:Add/BusinessProcess: Order /Region:US
No
Yes

Document
2000-0202

and

PO#12345
2000-0202

and

PO#12345
date primitive

string primitive
Yes
Command:Add/BusinessProcess: Order /Document:Date/ and Command:Add/BusinessProcess: Order /Document:/Id
Yes
Yes

Line Item
$200.00

100
200 francs

100
Float primitive

Float primitive
Yes

Yes
Command:Add/BusinessProcess: Order /RegionUS/LineItem/Price:$200.00/ and Command:Add/BusinessProcess: Order /RegionFrance/LineItem/Price:200 francs/ and

Command:Add/BusinessProcess: Order /LineItem/Quantity:100

No

No

Yes
Yes

Yes

Role/Profile
Seller
Seller
Enumeration
Yes
Command:Add/BusinessProcess:Order/Role/Profile:Seller

The contextual attributes are derived from the list of Context Classification above. The contextual attributes could be attached to a single Core Component or to a composite component or to a “document schema” (which in essence would seize to exist however).

Relative to schemas, context can be used to create a static document schema to program and validate document instances, or generate “traditional” schemas on the fly.

One of the benefits of adopting this architecture is that it will provide the UCC with the methodology for automatically creating its library of industry and geography specific schema extensions. In addition to UCC, the larger enterprises that are international and global, and support IT departments could also benefit from the dynamic schema building using Core Components and Context.

5 Message Flow

The following Message flow diagram shows the assembling of the message and posting it to the Internet. The message is delivered to the party, the headers are unpacked by the appropriate applications and the context rules are used to decompose the message into composite schema components.

In the next two diagrams, the message is unpacked and processed. In the first scenario, the Context Architecture is used to unpack the XML and route it to the appropriate application for processing.

I

In the next diagram, the message is not decomposed by the receiver. It is stored in an XML Repository in its entirety.

6 Contrasts

6.1 Message Layering

6.1.1 Message Transport Layer

The separation of message transport as proposed by the UCC.EAN architecture has been identified as an accepted practice in most of architectures in existence. It is currently employed by xCBL, RosettaNet, ebXML.

The exact content of the layer varies widely. Some of the initiatives mentioned are actually leaving this layer to be defined by other bodies (xCBL). Others are defining their own (ebXML, RosettaNet). There are several standards being developed specifically working on this layer, such as ebXML Transport and Routing, XML Transport, SOAP and bizTalk. Some just include to and from information. Others include some manifest data and controls to be used in guaranteed messaging capabilities.

The exact format of the message also varies. Some of the implementations utilize a pure XML approach (SOAP, bizTalk). Others allow for multiple documents to be created where they are all grouped together using a MIME wrapper (ebXML, RosettaNet).

This paper will not select which one to be used. This should be done after analyzing the benefits of both and coming to a consensus.

6.1.2 Message Manifest Layer

The existence of a manifest is called out in a couple of the specifications. Most notably, ebXML and RosettaNet. EDI also utilizes a similar concept. The exact content varies.

6.1.3 Command or Response Layer

None of the specifications specifically describe the utilization of a command layer. However, several of them utilize a similar concept without calling it out.

6.1.3.1 xCBL

xCBL creates a command tag that mixes up the command and the type of information it is affecting. They have commands such as “PriceCatAction” where a “CatalogDelete” or “PriceCatDetail” (effectively Add or Change) can be utilized to affect stored pricing information. As is noted in an earlier section there is also a “ProdCatAction” which allows for a comparable set of actions associated with an item. In the next release, xCBL 3.0, actually allows for pricing and item data to be sent in the same “ProductCatalog” message for the same item. Both versions of xCBL allow for multiple items to be sent at the same time.

Another convention utilized by xCBL is the use of a customized response for every request that is sent out. For example, the “PurchaseOrder” request has a corresponding “PurchaseOrderResponse” message.

xCBL then utilizes some of the same conventions as what is proposed, but the EAN.UCC takes it a little further. EAN.UCC takes things to be a little more generic to allow for greater reuse. Instead of using “ProdCatAction” it uses a structure to specify that command not only for item, but to be used with other document types.

6.1.3.2 UDDI

UDDI also uses a command and response structure to wrap up application data. It has commands such as “save_business”, where the command is attempting to save a “buisnessEntity” structure that is reused in other commands. This is the equivalent to an Add command working on a Party definition. UDDI allows for entities to be defined at the same time, but does not allow more than one type of document to be affected with any command. It also has a command such as “find_business” where the response to the message will be a “businessEntity” object.

Again, here there really is a command layer, except the command and the type of element it is affecting are intermingled. Thus, multiple types of documents being saved with the same command is not possible, nor is the reuse of the same command structure.

6.1.3.3 cXML

cXML is comparable to UDDI approach. However, it does not appear to allow many documents of the same or different type to be grouped together in the same command.

6.1.3.4 ebXML

It is imagined that the ebXML Core Components group would be defining ebXML’s take approach to this. None is available at this time.

6.1.4 Data Layer

For the most part, it appears that all approaches separate a command layer from the document itself to some degree. Some specifications, however, do a better job than others.

6.2 Unique Identifiers

6.2.1 xCBL

For item identification xCBL utilizes a structure like the following

<PartNum>

<Agency AgencyID="AssignedBySupplier"/>

<PartID>PK122122</PartID>

</PartNum>
For party:

<Party AgencyID="CommerceOne" PartyID="1732"/>
For other documents the creator, and in some circumstances, the receiver of the information place their own identifiers to the document:

<BuyerRefNum>

<Reference>

<RefNum>100</RefNum>

</Reference>

</BuyerRefNum>

<SupplierRefNum>

<Reference>

<RefNum>500</RefNum>

</Reference>

</SupplierRefNum>
6.2.2 cXML

cXML uses Unique Identifiers for messages. Let us look at the following examples:

For Item:

ItemID contains two elements SupplierPartID and SupplierPartAuxilaryID. If the supplierPartID does not uniquely identify the Item, then the supplierPartAuxilaryID is used to specify an auxilary key that identifies the part uniquely when combined with the supplierID and supplierPartID.

<ItemID>

<SupplierPartID>1233244</SupplierPartID>

<SupplierPartAuxilaryID>1233244</SupplierPartAuxilaryID>

</ItemID>
For Party:

<SupplierID domain="DUNS">942888711</SupplierID>

For other documents (in this case subscriptions), cXML uses a similar concept to what is proposed:

<SubscriptionContentRequest>

<InternalID>1234</InternalID>

<SupplierID domain="DUNS">942888711</SupplierID>

</SubscriptionContentRequest>
6.2.3 ebXML

To date, ebXML has not defined anything related to the Unique Identifier.

6.2.4 RosettaNet

RosettaNet utilizes and assumes DUNS for party and GTIN for item. For other documents, there appears to be a “ProprietaryDocumentIdentifier” which simply is a string. No documentation is found on the use surrounding this field at this time.

6.2.5 UDDI

Access keys for all the data elements of UDDI are globally unique. They utilize the DCE UUID convention mentioned earlier in the proposed architecture section. Once defined this reference is then used to point to that data in other commands as well as other data structures.

tModelKey:

tModelKey uniquely identifies a specific instance of tModel data.

<tModelInfo tModelKey=”34D5…”>

<name>Proprietary XML Purchase Order</name>

</tModelInfo>
This key can then be used in other commands to affect data structures.

<get_tModelDetail generic="1.0" xmlns="urn:uddi-org:api" >

<tModelKey>34D5...</tModelKey>

</get_tModelDetail>
To get around the issue of having users attempt to generate UUIDs, the UDDI specification allows data structures to be published without their corresponding keys. When the UDDI registry receives the data, it is that software’s responsibility to generate the corresponding UUIDs.

6.2.6 UCCnet

The current version of UCCnet only use of Unique Identifiers are GTIN and GLN to represent Item and Party documents. All other identifiers are generated by the UCCnet system.

6.3 Re-usable Documents

Most of the current message sets tend to send one large document related to the business process it is working with. Purchase orders would tend to conglomerate much of what is needed in one document, including party and item data to a certain extent. The idea of the data synchronization and reuse of common instances of documents is relatively unique to the proposed architecture.

6.4 Context Sensitive Message Definition

6.4.1 ebXML

The ebXML Core Components group is actually the organization behind the context sensitive message definition effort.

6.4.2 xCBL

The current implementation of xCBL supports the context sensitive message definition architecture by allowing a list of customized fields to be defined in a dynamic fashion. Instead of “hard coding” those fields in a DTD or Schema, xCBL allows them to be defined as a parameterized name value pair. For example:

<ObjectAttribute>

<AttributeID> Processor Speed</AttributeID>

<AttributeValue>500MHZ</AttributeValue>

</ObjectAttribute>

<ObjectAttribute>

<AttributeID>Battery Life</AttributeID>

<AttributeValue>6 hours</AttributeValue>

</ObjectAttribute>
Although certainly flexible for adding dynamic field information, there are problems with this technique. First off, field typing would be difficult. Complex structures where related information is to be tied together would be impossible. An array of values would also be difficult to do with out saying “element1”, “element2” and so forth. Required fields cannot be implemented this way.

For these reasons and others, the authors behind xCBL are helping with the context sensitive message definition effort in ebXML.

6.4.3 UDDI

UDDI does not directly implement a context sensitive message definition. It instead facilitates such a system. UDDI allows “business services” to be defined. These services typically will have dtds or specifications that describe how they work, as defined by “tModels”. Using this methodology, the message sets and related contexts the business service supports can be communicated to other trading partners. based classifications. The categoryBag is a (name, value) pair. Categorization is done for industry, product, geography etc.

7 Benefits

7.1 Benefits Overview

After review of this new architecture, legacy architecture and comparisons to other emerging architectures, we believe that this proposal contains a good balance of new technology and flexibility to allow each implementation the ability to customize based on their internal requirements. Finally, and most important, this arhcitecture will position our message set for emerging technologies and unforeseen market forces into the future. Lets review the objectives stated in the Executive Overview of this document.

Objectives:

· Minimize legacy ERP integration impact

· Enable SME’s to adopt this new technology

· Leverage Internet capabilities to move data in more creative ways

· Enable known messaging needs based on industry knowledge of exchanges, processes and pilot experience, i.e. Global Document repositories, one to many and multi-hop communications etc…

· Embrace a message set based on OO technology to create and maintain standards quickly, efficiently and in a collaborative consensus building environment

· Resulting message architecture must be flexible enough to grow as new technologies emerge

· The message architecture must use Unique Document instance identification

It is also important for us to identify some of the Internet capabilities that the UCC has already identified as critical to achieve success:

· Global Document repositories that store message information in one place. Multiple users can access these messages and act upon them with a set of commands

· Reference documents by key or URL. This will be critical with the Global Document repositories as well as the volume of data to use XML can be eight times greater than legacy B2B EDI today as the emerging market exchanges that have already defined a need for this capability

· Multi-hop and one to many communications abilities.

· Globally unique documents instance identifiers

7.2 Benefits Detail

7.2.1 Small and Medium Sized Enterprises, (SME)

The key to the new architecture is to not only solve some of the forseen problems that our larger user community is aware of, but to open B2B posibilities to the small companies. This will create the appeal that accelerates mass adoption and use of the standard globally.

How does this new architecture facilitate the SME? The primary benefit to the SME, is the ability to send and receive messages in small, singular packages. Although the architecture opens up the possibility for the sender to group like messages within single commands, this is not a mandate within the architecture. To faciliate the SME, the architecture allows the sender to create a single command message for each document.

In other words:

ADD

Order 12345678901234

:

:

ENDADD

This allows the SME to use standard desk top tools to convert the XML to HTML and present this information in a browser. If the SME had to receive all of their data en mass within one command, this would be very hard to visually display within a browser. Similar to a very large document that must be resolved by your desktop browser.

But, keep in mind, that the large companies will want to batch many messages within one command to improve process efficiency. This architecture facilitates both.

Another distinct advantage to the SME is that the architecture will allow the sender to communicate content documents as well as URL references to documents.

What does this mean? Given the above add order, this could actually be received and the content of the command ADD, could contain a URL, that directs the SME to go get this XML order at this location. This may be very attractive to some SME’s who wish to use the push pull option, and go resolve that XML order via a broswer at their convenience.

But, another SME may not want that kind of a delay. They may want the XML instance data immediately within the command. We have provided enough flexibility to do both. The SME will have the option to communicate however the process best fits their needs.

This is also a distinct advantage to large companies as well as the exchanges. Remember, these two audiences will have large and small partners, so any architecture will need to support many needs.

As you read futher, you will see some other benefits like repositories, object oriented design and integration minimizing. All of these benefits, in addition to helping the large companies and exchanges, will help the SME because these exchanges will allow small companies to participate in economies of scale by joining larger trading communities.

7.2.2 Global Document Repositories

Document repositories are already being defined as critical to B2B Internet communications. What is a document repository? The primary purpose is to provide business information in the form of an XML instance file in one single referable place, which could then be acted upon, by multiple users in multiple different ways.

One example would be if a major manufacturer wanted to introduce a new item. In today’s peer to peer environment, this business data would need to be created and sent for each potential receiver. In some cases, this could be thousands of potential receivers, causing process and communications log jams.

What if you produce one instance of this business information, via a single XML file of the item to be introduced and place this data in a safe extranet(or Global Repository) area accessible by interested parties? Then, instead of communicating all of the business data to each of the 1000 possible receivers, you only send out a reference to the new item introduction by sending a short command layer message that contains a URL to the static data within the global repository.

ADD

http:\\UCC_Global_Repository\GTIN\12345678901234.xml

ENDADD

Now, this information is accessible by all secured parties, and can be acted upon by anyone, based on their specific need.

For example, one possible receiver could act upon this data by sending back a command to the owner of the data, that they accept this item and will begin ordering it. But another receiver may wish to reject this item. Both companies, can send the different commands, one “accept”, one “reject” and reference the same URL. This can only be achieved by seperating the “command” from the “content.”

The company that accepts, can send an internal message to their catalogue service that says, please add this new item to our catalogue, and here is the URL for the information. Different parties can now perform different processes against the same business data. This specific method is another way to achieve multi-hop.

This same company can send an additional message requesting to delete this item because it no longer wishes to carry it.

What is important here, is that to accomplish this repository concept, you have to separate the data from the command. The actual Item information in the repository cannot have a command or action associated within it. Today, these commands or actions are ADD, CHANGE or DELETE.

This is different from EDI today, as EDI identifies an action inside a document. For example, you would define an Item, then you hard code within the transaction set that it is an ADD, CHANGE, or DELETE.

As you can see if you put an action or command in the data, then the document repository concept falls apart.

But, what about the small guy who does not want to use a repository? The beauty of this architecture, is that you have the option, to send the data and all of its contents. You don’t have to use URL or key references, you can simply send the XML business data via the Item XML file. The result is we facilitate more than one way to communicate the messages. One of these methods is a more traditional approach.

So, who in our audience does this benefit? Clearly the large trading communities like UCCnet and the global trade exchanges, as these are the benifactors of these concepts. But both communications SP and translation SP benefit because these technologies are minimizing communications and processing time. Finally, both large existing EDI users and SME’s benefit. By enabling this “Internet-think” to efficiently perform traditional processes with a new communications medium, the SME will be able to use many of these different Repositories with existing browser technologies provided within products like IE 5.0 and the latest version of Netscape. This is by far, the biggest benefit for all parties.

7.2.3 Reusable Documents

As the previous example demonstrates, we have taken a singular document of information, ITEM, and made it accessible to different parties, SP, and different internal ERP systems. One document, multiple actions, by multiple participants.

But, this only touches upon one aspect of reusability. What about all the pieces of information that different business processes access? For example, party information that identifies a bill to address. This party information will need to be communicated in many different documents, PO, Invoice, Despatch and more. The owner of this information can place this in one place, and it can be referenced by the actual XML instance file. So, wherever this party information applies, other documents can reference this information in one place.

A better example might be price brackets. A company as large as P & G may actually have less than 20 price brackets. These brackets could be instantiated with one XML file accessable to many different pricing commands, reused each time. The receiver of this information need only populate or refresh this informaiton on an as-needed basis. The result is that instead of data being replicated in many different places, and with many different possible versions, we establish an architecture that can begin to put data in one place and have other messages reference this data.

7.2.4 Object Oriented (OO) Design

This new architecture not only uses OO design, but also embraces and maximizes it.

By separating the command or action layer from the data layer, we are objecting data to be acted upon by many different commands. Conversely, the commands are objected and can act upon all applicable documents. The benefit here is tremendous from a Standards view. With this OO approach, any new document has an existing set of commands that can be used. Any new command has all existing documents that it can act upon. The result is the UCC can build a full functioning set of Commands and documents much quicker. This benefits all target audiences.

This creates synergies with existing Standards approach the UCC has taken in using Process Modeling to achieve the same benefit at the data class level. In addition to this, the number of messages required to complete the UCC message sets drastically reduces.

This OO benefit creates a quickly deployable, easily maintainable message set that benefits all member companies large and small as well as the exchanges and trading communities.

7.2.5 Unique Document Identifiers, (GLN and GTIN)

Those familiar with EDI, understand this concept. EDI uses the transaction set control number. But, transaction set control numbers are only unique between two trading partners in a peer to peer environment.

This new architecture uses the GLN as a globally unique prefix. Then, based on the specific document, a suffix will be appended to create a globally unique identifier for each document. The result will re-inforce the Global Repository concept allowing these documents to be easily identified and located with a single global unique key.

This also supports and promotes the adoption and use of the cornerstone of the EAN.UCC system, the Global Location Number (GLN) and the Global Trade Item Number (GTIN).

This unique document identifier must exist to adequitely build an acknowledgement structure for all messages.

With a way to uniquely identify all business instance messages, we lay the groundwork for a possible single Global Repository. Although this may not be the definitive way repositories are implemented, these Unique Document ID’s allow for both a single repository, and a distributed concept. With these unique keys, this also opens up the ability to store these instances in a database in addition to free standing .xml files. Once again, leading edge, but flexible to grow with technology and market changes.

This concept also reinforces the need to communicate one to many, and multi-hop.

All target audiences benefit from Unique Document ID’s and it is recognized that this concept is a must.

7.2.6 Minimize Integration

This new architecture will impact existing integration efforts in contrast to traditional EDI. This is the most challenging area and it is brave for us to put this category in the benefits section. We must focus on the term minimize.

We already know that our new method of developing messages with business processes is breaking traditional EDI Transaction sets into smaller simpler messages. The traditional 832 EDI Item document has already been broken into at least two messages, Item and Party.

The traditional EDI Price Transaction may break into as many as 5 distinct messages. The primary reason for this is that EDI is based on what paper flowed 25 years ago, whereas technology, ERP systems and communications abilities have drastically changed, if we simply create XML messages that mimic EDI, we gain very little.

This is not an easy concept for our users to grasp because most of their existing integration programs to move EDI feeds into their applications won’t work with our new architecture without significant change. But we need to minimize this effort, and at the same time, allow the newer braver technology to move forward and grow into a new generation of ERP and application tools.

The biggest objection we may receive from our audience is that the messages are decomposed into smaller objects that may not come in at the same time. That is, in the case of the above EDI 832, traditionally the 832 comes with all the parties defined, then multiple items that these parties will exchange. This document relates best to at least two XML messages, the party and the item. But, this 832 comes in with multiple parties and then multiple items defined in one single message.

To resolve this, the new architecture can minimize this by allowing the users to define and group this data together based upon the specific needs. For example, if a large EDI user wishes to minimize his integration effort in accepting the new XML feeds for Item and Party, they can request the sender to combine the item and party information and wrap them in the same command. This gives the receiver the ability to define that the data comes into their system, grouped in bundles similar to what EDI gives them today.

Although they still will need to rewrite their interface to legacy systems, by bundling the information in the same or similar bundles as EDI, we have minimized their integration effort.

On the other hand, if you have an SME, who has no legacy EDI, and is willing and able to move into the brave new OO world, they can embrace the new message sets, document repositories, referenced URL’s etc…

The same architecture supports both the old and the new needs that our membership will use. Remember, the legacy EDI users are a small number of companies that we are targeting. We have over 800,000 companies that are potential users of this new Internet message standard, simply to rebuild EDI with XML, will once again, leave these users behind.

7.3 Benefits Summary

Our industries are on the verge of an evolution in B2B communications. Today, less than two percent of companies worldwide participate in EDI. Although the benefits of application to application integration are enormous, the cost and complexity have left 98% of companies unable to participate in these benefits.

The companies that are doing EDI are mired down because most of their customers and vendors require manual processing.

Although it is tempting to target only existing EDI users, that are coincedently also the largest dollar volume companies, to achieve the critical mass adoption that eluded EDI, we need to identify, assess, evaluate and embrace all new technologies that allow us to take complete advantage of the ability to reach everyone instantly via the Internet.

As previsously identified, such concepts as document repositories, object oriented messages, globally unique identifiers and emerging internet trading communities that have unique communications needs like multi-hop and one to many, all need to be considered.

If we do this, we can create a new XML standard, driven by business processes, enabled through the Internet, that will quickly reach critical adoption numbers to achieve a single global standard for B2B integration within UCC and EAN supported industries.
Transport

Business Service Interface

Business Service Interface

Internal Business App

Internal Business App

Package

Trading Partner Agreement

Repository

Register

Business Messages

Core Components

Business Process

Built With

Context For

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

_1037625061.ppt

The Command is applied

XML Repository Server

Command Layer

The Message Manifest Layer

is applied.

The Message is sent.

App Server

Firewall

Communication

Server

Firewall

XML

instance

Internet

HTTPS

DMZ

The Message Transport Layer

is applied.

Message Transport Layer

Message Manifest Layer

.

_1037647610.ppt

XML

instance

Internet

HTTPS

DMZ

The Message Transport Layer

is unwrapped and the Message

Manifest is exposed.

Message Transport Layer

Message Manifest Layer

A routing table maps

the component to its

next destination using Manifest.

There maybe multiple documents

to route.

The Command Layer is exposed.

The Command Layer

tells the Application server

how to process the payload

part. The document is processed as per the

instructions in the Command Layer.

Command Layer

App Server

Firewall

Communication

Server

Firewall

XMLl Repository Server

_1037625429.ppt

App Server

Firewall

Communication

Server

Firewall

Catalog Repository

Server

Order

Repository Server

XML

instance

Internet

HTTPS

DMZ

The Message Transport Layer

wraps around the Message

Manifest.

Message Transport Layer

Message Manifest Layer

The XML Objects are assembled

 into a valid XML Document object,

enveloped in the Message Manifest

and routed to the partner.

There maybe multiple documents

to route.

Applications responsible for their business segment,

populate the XML Repository with XML Objects and

the Command Layer.

Price

Part

Item

Part

Order

Part

The Command Layer

tells the Application server

how to process the payload

part. The payload is exposed.

Command Layer

_1037527686.ppt

App Server

Firewall

Communication

Server

Firewall

Financial Repository Server

Catalog Repository

Server

Order

Repository Server

XML

instance

Internet

HTTPS

DMZ

The Message Transport Layer

is unwrapped and the Message

Manifest is exposed.

Message Transport Layer

Message Manifest Layer

A routing table maps

the component to its

next destination using Manifest

and the Context Architecture.

The payload is unbundled into its

Composite Schema Components.

The Command Layer is exposed.

There maybe multiple documents

to route.

The result of exploding out validated,

composite schema components based upon the

context rules.

These can now be routed to their destination

Price

Part

Item

Part

Order

Part

The Command Layer

tells the Application server

how to process the payload

part. The payload is exposed.

Command Layer

_1012305381.doc
[image: image1.png]COMMERCE =

ONE. =

